

N-Polar GaN Deep Recess HEMTs for mm-Wave Power Amplification

Brian Romanczyk

Mishra Research Group

Department of Electrical and Computer Engineering University of California Santa Barbara

With support from ONR (Dr. Paul Maki) and DARPA (Dr. Dan Green, Dr. Y.-K. Chen)

October 10, 2019

Outline

I. Introduction

- mm-Wave Application Space
- Status of Competing Device Technologies
- Demonstrated Advantage of N-Polar GaN
- II. The N-Polar GaN Deep Recess HEMT
 - Enabling Features of the Device Structure
 - Fabrication Process for Self-Aligned Gate
- III. Experimental Results: Large Signal Performance
 - W-Band Device Performance (94 GHz)
 - Ka-Band Device Performance (30 GHz)
- IV. Conclusion

Outline

I. Introduction

- mm-Wave Application Space
- Status of Competing Device Technologies
- Demonstrated Advantage of N-Polar GaN
- II. The N-Polar GaN Deep Recess HEMT
 - Enabling Features of the Device Structure
 - Fabrication Process for Self-Aligned Gate
- III. Experimental Results: Large Signal Performance
 - W-Band Device Performance (94 GHz)
 - Ka-Band Device Performance (30 GHz)
- IV. Conclusion

mm-Wave Applications

Atmospheric absorption windows and attenuation peaks useful for a variety communication and sensing of applications

79 GHz: Automotive Radar / Collision Avoidance

UC Santa Barbara • ECE Dept. • Mishra Group

Solid-State Power Amplifiers

Qorvo TGA2594: 27-31GHz 5W GaN Power Amplifier

Qorvo TGA2594 datasheet

Typical mm-Wave PA's cascade multiple transistors to provide useful level of gain and power

This Work: Fabricate only transistor unit cells to characterize the device

This Work

GaN provides highest output power from 1 to 100 GHz

Plotted data from commercial product datasheets and select publications Data compiled with M. Guidry Key Properties of GaN (Ga- & N-Polar)

Polarization: Large 2DEG Charge without Doping (High Mobility & Current)

Wide Bandgap: Large Breakdown Voltage

Key Device Metrics for Power Amplifiers

N-Polar breaks through P_{out} saturation observed for traditional Ga-polar devices with **8 W/mm**

Romanczyk et al., *IEEE Trans. Electron Devices*. Jan. 2018

Outline

I. Introduction

- mm-Wave Application Space
- Status of Competing Device Technologies
- Demonstrated Advantage of N-Polar GaN
- II. The N-Polar GaN Deep Recess HEMT
 - Enabling Features of the Device Structure
 - Fabrication Process for Self-Aligned Gate
- III. Experimental Results: Large Signal Performance
 - W-Band Device Performance (94 GHz)
 - Ka-Band Device Performance (30 GHz)
- IV. Conclusion

GaN HEMTs: Ga-Polar & N-Polar

UC Santa Barbara • ECE Dept. • Mishra Group

The N-Polar GaN Deep Recess HEMT Structure

N-Polar Deep Recess Structure

- ✓ AIGaN backbarrier provides charge and 2deg confinement
- ✓ Low resistance regrown n⁺ contacts by MBE
- ✓ AIGaN cap & MOCVD SiN Gate Dielectric for low gate leakage
- ✓ GaN Cap for dispersion control and low access resistance
- ✓ Self-aligned gate for process control and low dispersion

UC Santa Barbara

ECE Dept.

Mishra Group

GaN Cap Advantage #1: Access Region Conductivity

Polarization also reduces |E| in the GaN channel ⇒ improves mobility

- Channel conductivity improved over wide current range
- Necessary for low V_{knee}

mm-Wave Challenge: Controlling DC-RF Dispersion

Surface states exist in GaN devices

Charge state responds to DC bias

mm-Wave Challenge: Controlling DC-RF Dispersion

Surface states exist in GaN devices

Charge state responds to DC bias

mm-Wave Challenge: Controlling DC-RF Dispersion

Surface states exist in GaN devices

Charge state responds to DC bias

P_{out} and Drain Efficiency are degraded relative to results expected from DC data

Traditional Solutions to Dispersion

SiN passivates surface states & moves external surface far from channel

Reduced electric field prevent trap ionization

Capacitance penalty disallows use at mm-wave frequencies

$$V_{T,access} = \frac{qn_s}{C}$$

GaN Cap Advantage #2: Dispersion Control

Increased n_s outweighs differential in ε_r
 ⇒ Higher V_T possible for same capacitance

Sub-10% dispersion thru 16 V V_{DS,Q}

2DEG

n+

Ohmic

Pad Metal

Metal

6

(7

(**Haoran Li,** Nirupam Hatui, Anchal Agarwal, Athith Krishna)

Metal

Pad Metal

(7

- SiO₂ Defines the gate stem
- Gate Metal: Cr/Au (45/500nm)

UC Santa Barbara • ECE Dept. • Mishra Group

(7)

Pad Metal

Outline

- I. Introduction
 - mm-Wave Application Space
 - Status of Competing Device Technologies
 - Demonstrated Advantage of N-Polar GaN
- II. The N-Polar GaN Deep Recess HEMT
 - Enabling Features of the Device Structure
 - Fabrication Process for Self-Aligned Gate
- III. Experimental Results: Large Signal Performance
 - W-Band Device Performance (94 GHz)
 - Ka-Band Device Performance (30 GHz)
- IV. Conclusion

N-Polar GaN Deep Recess Device Overview

Off-State Breakdown: 38 V

UC Santa Barbara

ECE Dept.

Mishra Group

Small Signal Gain

Large Signal Device Evaluation: 94GHz Load Pull

Romanczyk et al. IEEE Trans. Electron Devices. Jan. 2018

Comparison with Literature

$$P_{out} = \frac{V_{swing} \times I_{swing}}{8} \le \frac{2 \times V_{DS,Q} \times I_{max}}{8}$$

N-Polar GaN: Record W-Band Performance

N-Polar offers greater current density giving higher P_{out}

Record-high combination of PAE and Power Density

Constant 8 W/mm: 10 – 94 GHz

- 94 GHz: UCSB Passive Load pull
- 30 GHz: Maury Microwave MT2000 Active Load pull
- 10 GHz: UCSB Passive Load pull

First Demonstration of Constant Pout **from 10 – 94 GHz**

(as expected from ideal FET operation)

Romanczyk et al. IEEE Trans. Electron Devices. Jan. 2018

UC Santa Barbara • ECE Dept. • Mishra Group

Ka-Band Performance (30GHz)

At 30 GHz increased gain allows access to deeper Class AB operation

Romanczyk et al, GOMACTech 2018

Ka-Band Load Pull of GaN Devices

N-Polar offers greater current density

Record-high combination of PAE and Power Density

Romanczyk et al, GOMACTech 2018

UC Santa Barbara • ECE Dept. • Mishra Group

Two-Tone Linearity at 30 GHz

Two-Tone Linearity at 30 GHz

Summary

N-polar Deep Recess HEMT Advantage

- Inverted polarization fields enable the Deep Recess HEMT design
 - ✓ Enhanced Access Region Conductivity
 - ✓ Control of DC-RF Dispersion

- Large-Signal Performance

- Frequency-Independent P_{out}
- 94GHz:
 - ✓ Record 8 W/mm P_{out}: 4x improvement over traditional Ga-Polar GaN HEMTs
 - ✓ 28.8% Peak PAE

• 30GHz:

- ✓ Record High GaN PAE: 59.8%
- ✓ Record high combinations of PAE and P_{out}
- ✓ 11 dB OIP₃/P_{DC}