

TECH talks 2019

High performance lasers on Si

Songtao Liu¹, Xinru Wu^{1,2}, Minh Tran¹, Duanni Huang¹, Justin Norman³, Daehwan Jung⁴, Arthur Gossard^{1,3,4} and John Bowers^{1,3,4}

stliu@ece.ucsb.edu

¹Department of Electrical and Computer Engineering, UCSB, California 93106, USA ²Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China ³Materials Department, UCSB, California 93106, USA ⁴Institute for Energy Efficiency, UCSB, California 93106, USA

Outline

- Motivation
- Heterogeneous integration
 - Sub-kHz optical linewidth lasers
- Direct epitaxial growth
 - Low-noise high-channel-count comb lasers
- Summary

Advantages of Si photonics

Many applications of Si photonics

From Jean Louis Malinge

The convergence of research and innovation.

SiPh already in a 300mm fab

First 65nm bulk CMOS wafers with working photonics and transistors!

WDM chiplet A. Atabaki, S. Moazeni et al. Nature, April 2018

Single Tx/Rx channel macro

The convergence of research and innovation.

The biggest limitation of Si photonics

Efficient ways to generate light on Si

M. Smit, et al, Semicond. Sci. Technol., 2014

- Mature light source technology
 - > Flipperbigebeodissgvafer bonding

The convergence of research and innovation.

Current status of the heterogeneously integrated lasers on Si

Further improvement in terms of optical linewidth

Modified Schawlow Townes Henry linewidth equations:

$$\Delta v_0 = \frac{q\omega^2 n_{sp}}{2Q^2 \left(I - I_{th}\right)} \left(1 + \alpha^2\right)$$

- Increase Q cold cavity quality factor, governed by the internal loss
- Reduce *I*_{th}
- Reduce n_{sp} , α

The convergence of research and innovation.

0.16 dB/cm propagation loss Si waveguide

Measured OBR trace of 1.8 um

0

One more step to improve the optical linewidth

$$\Delta v = \frac{\Delta v_0}{F^2} \qquad F = 1 + A + B \qquad A = -\frac{1}{\tau_{in}} \frac{d\varphi_{eff}(\omega)}{d\omega} \quad B = \frac{\alpha_H}{\tau_{in}} \frac{d}{d\omega} \left(\ln \left| r_{eff}(\omega) \right| \right)$$

- Reduce Δv_0
- Increase A Extended cavity length/ active length
- Increase B Negative feedback effect (detuned loading)

Minh Tran, PhD thesis, UCSB, 2019

Ring Resonator Coupled Lasers

Using rings inside the cavity benefits the linewidth in two ways:

Resonance cavity length enhancement

(ii)

- increasing the photon lifetime due to effective cavity length enhancement.
- Negative optical feedback
 - providing negative optical feedback by slight detuning from the ring (resonator) resonance.

B. Liu, J. Bowers, APL, 2001

(iii)

Ring Resonator Coupled Lasers

Designed Vernier FSR = 114 nm
✓ Passive SMSR > 8 dB across the whole tuning range

The convergence of research and innovation.

Laser performance characterization

Frequency Noise and Lorentzian Linewidth

Emerging light source technology by direct epitaxial growth

Monolithic Growth is Difficult

- Lattice constant mismatch
 - High density of dislocations, antiphase domains, stacking faults
- Thermal expansion mismatch
 - Cracking, residual strain at room temperature

Tremendous progress in the last five years

Maturation of the Light Source

Advantage of the quantum dots

Quantum dots have advantages over Quantum well or bulk material

- ✓ inhomogeneously broadened gain spectrum
- ✓ ultrafast carrier dynamics
- ✓ superior temperature stability
- ✓ high saturation output power
- ✓ better back-reflection insensitivity
- ✓ low level of amplified spontaneous emission (ASE) noise

Excellent material for making mode locked lasers!

Simple structure to generate a wide coherent spectrum with a fixed channel spacing

Mode locked laser device design

- Two section mode locked laser design
 - 3 µm ridge width
 - 2048 µm cavity length
 - SA section length is 14% of the total cavity length
- Active region: chirped five stacks of InAs QD layers
 - P modulation doped 5 x 10¹⁷ cm⁻³ in the spacer layer
 - TDD as low as 7 x 10⁶ cm⁻²
 - Chirped QD layers for broadened FWHM of 69 nm

1.00

PL spectrum of the material used.

Basic device performance

L-I-V curve

- Threshold: increase from 42 mA to 58 mA as SA section reverse bias increase
- Series resistance: $\sim 3.2 \Omega$

- Mode locking criterion: being restricted to fundamental frequency tone signal to noise floor (SNR) ratio larger than 30 dB with the pulse width narrower than 12 ps.
- Wide mode locking regime is demonstrated.

Basic device performance

- A sharp fundamental RF tone at 20.02 GHz with a SNR of 64 dB and its higher-order harmonic can be clearly seen across the 50 GHz span, indicating very stable mode locking operation.
- The 3 dB RF linewidth is 1.8 kHz with a Voigt fit.
- The integrated timing jitter is 82.7 fs from 4 to 80 MHz of the ITU-T specified range, which is the lowest timing jitter ever reported to date for any passively mode-locked semiconductor laser diode.

The convergence of research and innovation.

Basic device performance

 I_{gain} = 180 mA, V_{SA} = - 1.92 V

The convergence of research and innovation.

PAM-4 system level transmission demonstration

[1] X. Wu, S. Liu, D. Jung et al., "Terabit interconnects with a 20-GHz O-band passively mode locked quantum dot laser grown directly on silicon", OFC, 2019

[2] S. Liu, X. Wu, D. Jung et al.," High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity", Optica, 2019

4.1 Tbps 64-wavelength 32 Gaud PAM-4 Demonstration

BER performance

PAM-4 eye diagram

- 64 channels are utilized.
- 32 Gbaud Nyquist pulse shaped PAM-4 modulation format.
- With 61 channels below hard-decision FEC threshold and total 64 channels below soft-decision FEC threshold.
- An aggregate total transmission capacity is 4.1 terabits per second.

Summary

Integrated lasers on silicon can provide a high performance, low cost, mass production and high energy efficiency solution.

✓ Record ultralow noise chip-scale semiconductor lasers

✓ Record ultrawide wavelength tuning ranges for chip-scale lasers

Epitaxial lasers are progressing fast.

The work was funded by ARPA-E, U.S. Department of Energy, under Award No. DE-AR0000843, ENLITENED program, DARPA under contract No. N66001-16-C-4017 and Morton Photonics DARPA STTR program #W911NF-16- C-0072. The authors would like to thank all the members in the group for useful discussions and contributions.