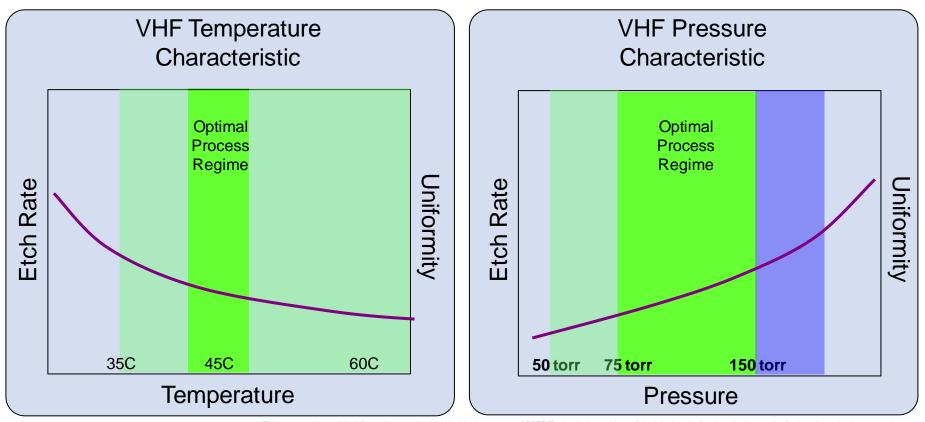
UCSB Vapor HF System Process Notes

This guide will serve as a process guide for the SPTS Vapor Etch System.

Standard recipes and process details are reported on the following pages. If processes outside the standard range of operation are required, users can discuss this with staff.

Some Basic Notes:

- 1. Under no circumstances shall any doped (P or B) glass, pyrex, or glass slides be used in the system. You may only use pure quartz or pure fused silica glass substrates in the system.
- 2. Users must use Nitrile gloves at all times while using the system, no other glove type allowed.
- 3. Samples should be baked at 200C for 2 minutes or exposed to an oxygen plasma prior to loading in the system. This is to prevent inhibition of etching due to outgassing of fluoroware or other plastic sample storage containers
- 4. Photoresist is not a good etch mask, the HF vapor will travel through the material and attack the SiO2 through the resist
- 5. Any organic residues left on the surface will remain after etching and may accumulate in "piles" on the surface.
- 6. Please see the materials compatibility chart in this presentation to determine proper masking materials for your process.
- 7. SiN and PECVD SiO2 (that uses N₂O) require a 250C, 1 minute, hot plate post bake (in a fume hood!) to remove non-volatile residues caused by the presence of nitrogen in the films.

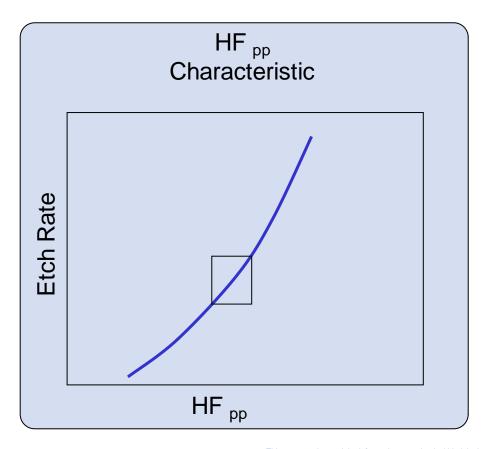

UCSB Standard System Recipes

	Etch Rat	te Matrix (A/min)		N2	EtOH	HF	Tot Flow	HFpp(T)	EtOHpp(T)	
Regulator	22.0	11.0	7.0	5.0							
Pressure(T)	75	100	125	150							
Recipe 1			110		1425	210	190	1825	13.0137	14.38356	
Recipe 2*			345		1250	350	310	1910	20.28796	22.90576	
Recipe 3*			994		1000	400	525	1925	34.09091	25.97403	
Recipe 4*			1170		910	400	600	1910	39.26702	26.17801	
Recipe 5			1300		880	325	720	1925	46.75325	21.1039	
*Rate meas All sample p	ore baked	at 200C on	hot plate	d UCSB filr	netrics						
Rate not yet	t measure	d for Recip	es 1 and 5								
	100 mm T	OX wafer e	tched. 5un	n starting t	hickness						
							Average F	Rate	343.3	A/min	
			347.5				WIW % (R	/2x)	2.26%		
	/				$ \rightarrow $						
	341		336.5		339.5						
	$\left\langle\right\rangle$				/						
			352								

4 inch wafer 100% SiO2 open area

PRIMAXX® VHF Etching – Rate Control

- Etch Rate dependencies
 - Increases with lower temperature and higher pressures
 - Decreases with higher temperature and lower pressures
 - Uniformity degrades as etch rate increases



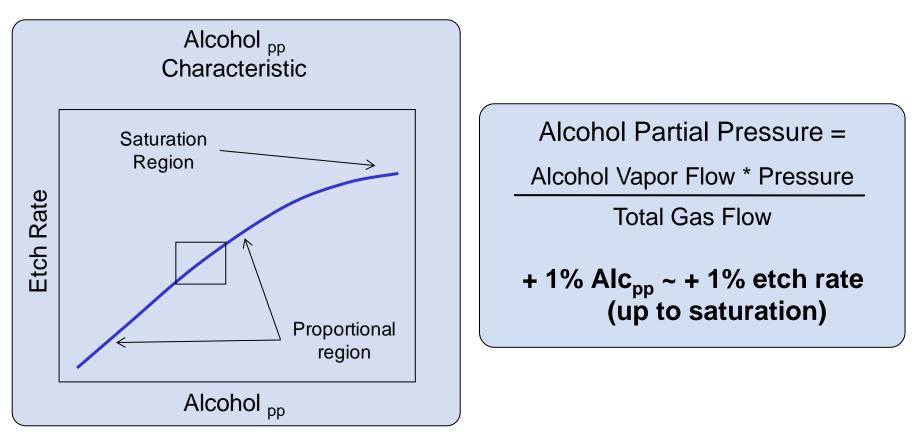
This presentation and the information contained within it is the property of SPTS Technologies and is confidential. Any duplication, disclosure, distribution, dissemination or copying of this presentation or its contents or use for any purpose other than that for which it is supplied is strictly prohibited, without the prior written consent of SPTS Technologies.

SP

Etch Rate Control – HF_{pp} using HF Flow SPTS

HF_{pp} is the dominant parameter used to control etch rate
Increasing Total Gas Flow (and Total N₂) without changing HF flow rate reduces etch rate because HF_{pp} is reduced

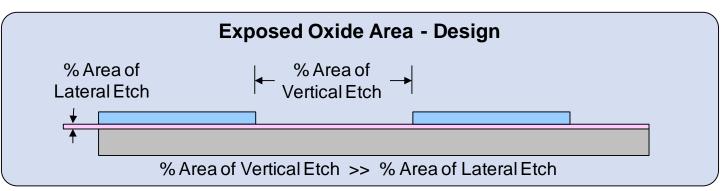
HF Partial Pressure =


HF Vapor Flow * Pressure

Total Gas Flow

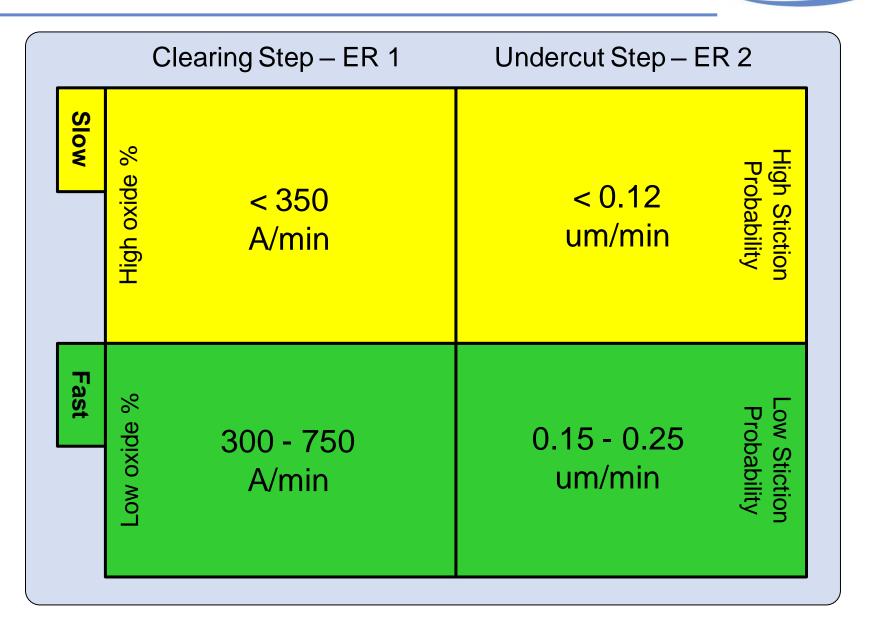
20% increase in $HF_{pp} = 40\%$ increase in etch rate when in a controlled regime

Alcohol in the PRIMAXX[®] VHF Process SPTS

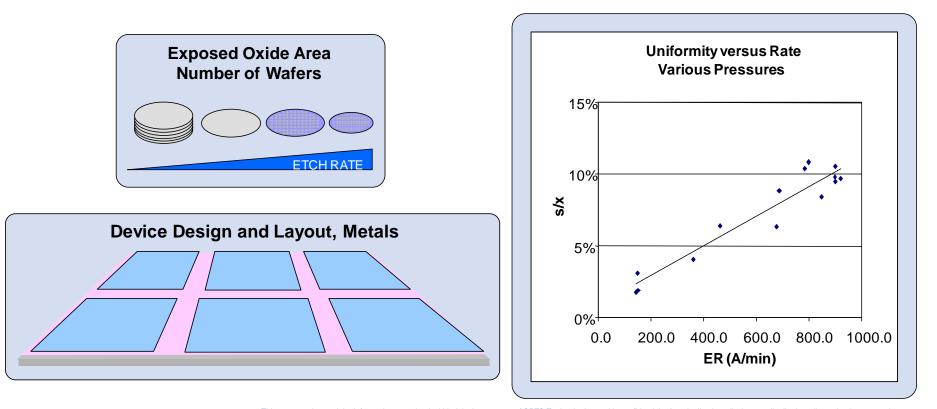

- Alcohol is <u>required</u> to ionize the HF and activate etching
- Alcohol influences within wafer etch uniformity
- Ethanol vapor pressure most compatible with VHF



5


Typical Two Step Etch Approach

- Initial oxide loading often high (field oxide, exposed BOX)
- Once etched to handle wafer (ER1), exposed area small


Process Regimes for Two Step Etching SPTS

Process Loading Effects

- Amount of exposed oxide is the biggest loading factor
 - Device/wafer layout, # of wafers, presence of back side oxide
- Uniformity degrades with increasing etch rate
- Presence of exposed metals limits maximum etch rates

Materials Compatibility with VHF

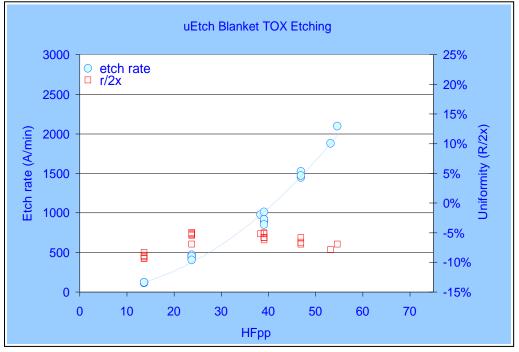
Material	Sacrificial Oxide	Protective Layer	Metal/Electrode /Adhesion
Thermal Oxide, TEOS	0		
SOI bonded oxide	0		
Quartz	0		
PECVD oxide	0		
Spin on oxide	\bigcirc		
Doped oxides BPSG, PSG	•		
Doped glass, Pyrex	•		
Low temperature spin on glass	•		
PECVD oxide (SiH ₄ +N ₂ O)	•		
Silicon (poly, amorphous, single crystal)		\bigcirc	
Alumina (thick)		\bigcirc	
ALD alumina (1000A)		\bigcirc	
Aluminum		\bigcirc	\bigcirc
Silicon Carbide		\bigcirc	
Si-Rich LPCVD silicon nitride (low stress)		\bigcirc	
Stoichiometric PECVD nitride		•	
Photoresist		•	
Gold			\bigcirc
Copper			\bigcirc
ті			•
TiO2			•
TiW			ightarrow
Nickel			0

PECVD Oxide has worked well for us.

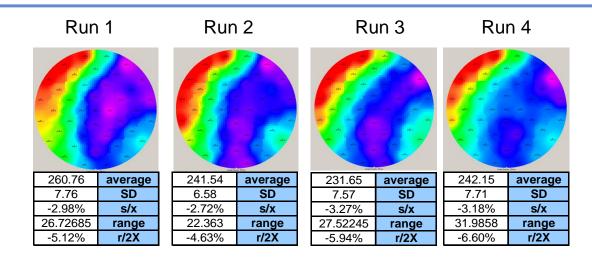
Other substrates than listed can be used. Confirm with staff.

Other metals may also be OK. Confirm with staff.

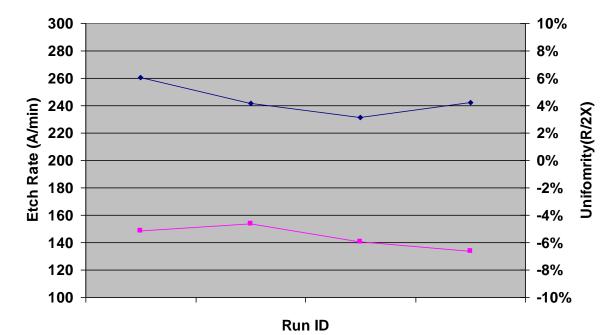
NEVER use doped glass (P or B) or pyrex or glass slides in the system.


Thinner ALD Al2O3 films may work fine as well. This needs testing.

uEtch Performance Specifications

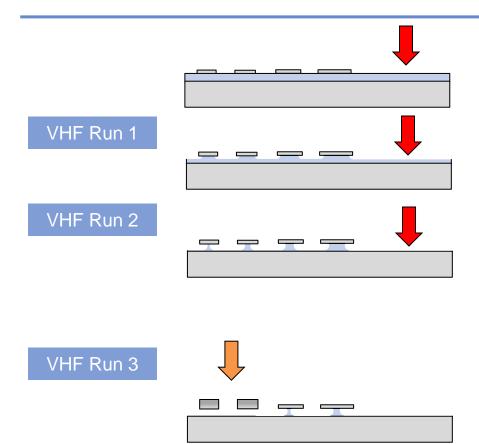


- Processes up to 1 x 200mm wafer per run
 - Or silicon wafer carrier/optional "pocket" carrier for die level
- Etch Specifications (200 mm blanket TOX etching)
 - Etch rate range : 100 A/min 1000 A/min
 - WIW ≤ 12%, R2R ≤ 15% (r/2x at 100 A/min, ER dependent); device wafer uniformities are typically better


uEtch Results – TOX Wafers

R2R statistics

average	244.03
sd	12.152039
s/x	4.98%
r/2x	5.97%



uEtch Patterned Wafers – Methodology SPTS

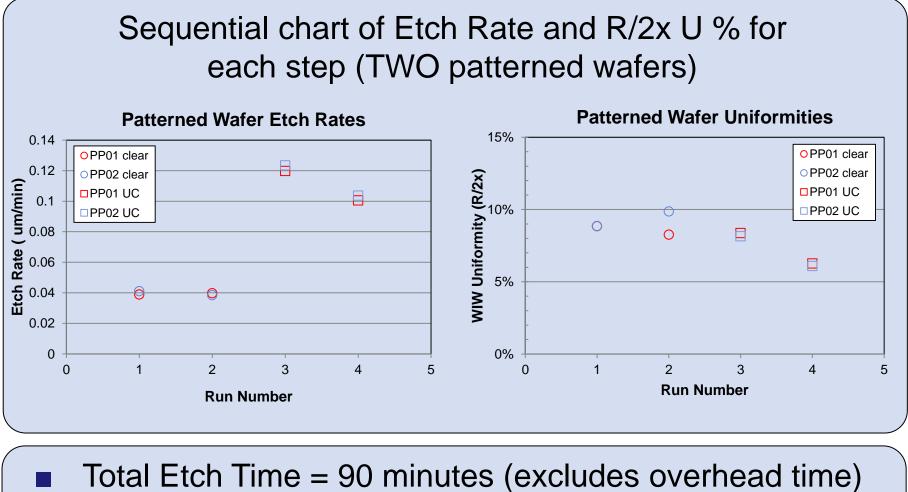
- Use TWO "patterned" test wafers to establish WIW% and R2R repeatability
- Use standard etch methodology:
 - Clearing Step remove exposed oxide using a slow to moderate etch rate to control uniformity under high loading conditions
 - Undercutting Step use a higher etch rate since the exposed oxide percentage has been reduced by an order of magnitude
- Etch test on each wafer (FOUR tests total)
 - Etch ~ 50% of exposed vertical thickness of BOX layer (ER_{CL}1)
 - Etch remaining exposed oxide, confirm clearing rate (ER_{CL}2)
 - Etch laterally (undercut) using higher etch rate (ER_{UC}1)
 - Repeat for a second lateral etch (ER_{UC}2)

12

uEtch Patterned Wafers – Etch Runs

Pre-measure 69 oxide pads with thickness mapping tool

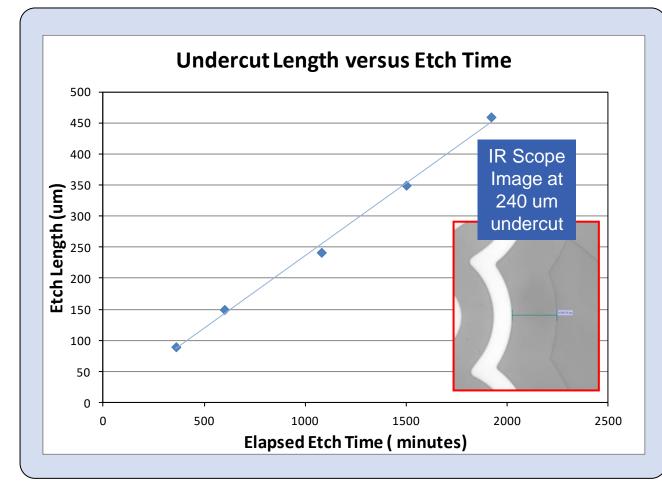
Etch 50% exposed pads and calculate $\text{ER}_{\text{CL}}\mathbf{1}$ with thickness mapping tool


Etch to substrate and calculate ER_{CL}2 with thickness mapping tool (NOTE THAT SOME UNDERCUT OCCURS - ISOTROPIC ETCH)

Etch laterally by time and calculate $\text{ER}_{\text{UC}}\mathbf{1}$ with optical inspection of vernier deflection

Etch laterally by time and calculate $\text{ER}_{\text{UC}}2$ with optical inspection of vernier deflection

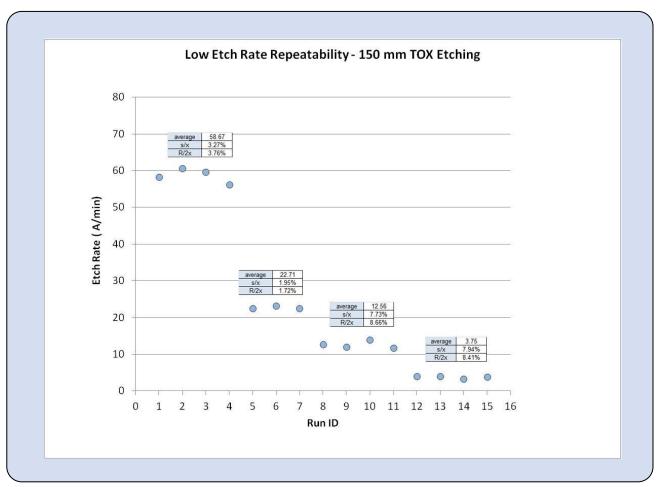
VHF Run 4


uEtch Patterned Wafers – Data Summary SPTS

Average Total Etch Length = 8.1 um
Average Etch Rate = 0.090 um/min

Etch Stability – Very Long Undercuts

SOI based sample, full removal of BOX layer with mm length undercuts



Etch Uniformity				
POSITION	UNDERCUT (um)			
Тор	244			
Center	240.1			
Bottom	241.2			
Left	242.1			
Right	241.2			
AVERAGE	241.7			
WIW% (SD)	0.6%			

Devices are cleared at 1080 minutes. Only the frame remains bound.

Etch Stability at Ultra Low Etch Rates

Controlled, repeatable etching on 150 mm blanket TOX wafers at ultra low etch rates from 60 A/min to 3 A/min

