

Hewlett Packard Enterprise

On-Chip Hybrid Silicon Quantum Dot Comb Laser With 14 Error-Free Channels

Geza Kurczveil, Chong Zhang, Antoine Descos, Di Liang,Marco Fiorentino, Ray Beausoleil

geza.kurczveil@hpe.com

Comb Lasers

-Exascale computers require two flavors of optical links

- -Node-to-node (low-medium traffic): Maximize efficiency \rightarrow 4-16 single- λ lasers (ring laser array)
 - -Turn off channel(s) you don't need
 - -Imperfect channel spacing
- –Port-to-port (high traffic): Maximize bandwidth \rightarrow Comb Laser
 - -Single device (2-4 terminals)
 - –Multiple λ within 3 dB of peak $\lambda,$ constant channel spacing
 - -Always on, even if you do not use all channels

Node-to-node

Comb laser requirements

- -Operation at high temperature
- -Wide gain bandwidth
- -Low amplitude noise in <u>**!EACH!</u>** comb line</u>

→ Quantum dot lasers ...

- -Integration with high quality passives
 - Gratings, splitters, rings, ...
- -High yield, volume manufacturing
- –On 300 mm wafers

Hewlett Packard

Enterprise

 \rightarrow ... on silicon

Don't use Si **just** as a carrier, take advantage of its excellent passives!

QD integration on silicon

Norman et al., OE, 25, 3927, 2017

Pulsed to 115 °C

Jang et al., Applied Physics Express, 2016

Our approach

Enterprise

– Bonding III/V to SOI

8

- Design layer thicknesses for efficient coupling between Si and III-V
- Adjust QD confinement through Si
 WG width

Device design

- -Single cavity would have tradeoff between gain and FSR
 - Need FSR ~ 50-80 GHz \rightarrow L \leq 750 μ m \rightarrow aggressively short (QDs have lower gain than QWs)
- \rightarrow Coupled cavity
 - FSR_{cavity} = 16.8 GHz, FSR_{ext} = 50.5 GHz \rightarrow FSR_{Laser} = 101 GHz
- -Fully integrated
 - No dicing/polishing

Hewlett Packard

Process

Data – Optical Spectrum

Setup for eye diagram

DUT \rightarrow amplify \rightarrow filter out **!one!** $\lambda \rightarrow$ ext. modulator \rightarrow eye diagram

Data – Eye Diagrams (10 Gb/s)

20 95

Setup for BER

Same setup as before, except we add a VOA DUT \rightarrow amplify \rightarrow filter out **!one!** $\lambda \rightarrow$ ext. modulator \rightarrow VOA \rightarrow BER

Data – BER

Hewlett Packard

Enterprise

- $\le 10^{-10}$ in all channels
 - Because of 3 dB insertion loss of VOA
 - $\le 10^{-12}$ in 14 channels without VOA
- 0.5 dB improvement over commercial external cavity laser
 - -Due to gain/ASE/saturation dynamics of optical amplifier (multi- λ vs. single- λ)
- QW-based laser would be limited by mode partition noise
 - Couldn't use individual comb lines for each channel

Data – Time Domain (Autocorrelation)

- Optical output is pulsed vs. CW depending on DC bias conditions

instantaneous power \rightarrow worse reliability?

Summary

- –Demonstrated a QD comb laser on SOI (12-14 channels)
- –On-chip mirrors, grating coupler \rightarrow Wafer-level testing

Future work

- -Improve passives
 - -GC

Hewlett Packard

Enterprise

- -Mirror
- -Integrate ring modulators
- Increase number of channels (dispersion engineering)

Back up

Temporal mode locking

Comb mechanism

- SHB, FWM, gain compression, inh. gain. broadening, Kerr nonlinearity, ...

Literature References

QD

- –M. Dong et al., "Traveling Wave Model for Frequency Comb Generation in Single-Section Quantum Well Diode Lasers," JQE, 53, 6, 2017
- –M. Gioannini et al., "Self-generation of optical frequency comb in single section Quantum Dot Fabry-Perot lasers: a theoretical study," arXiv, 1707.06561v1, 2017

QW

–K. Sato, "Optical pulse generation using Fabry–Pérot lasers under continuous-wave operation," JQE, 9, 5, 2003

Bulk

–L. F. Tiemeijer et al., "Passive FM locking in InGaAsP semiconductor lasers," JQE, SQE-25, 6, 1989

Relative Intensity Noise – 1/2

DUT \rightarrow filter out **!one!** $\lambda \rightarrow$ amplify \rightarrow measure RIN (for same P_{rec}!)

Enterprise

Relative Intensity Noise – 2/2

Hewlett Packard **Labs**

Implantation

- Target dose in cladding: 1E14 cm⁻²
- Target concentration in QD: <1E17 cm⁻³
- Our sample is Be doped, so perhaps some difference in performance

Boudinov et al., "Electrical isolation of p-type GaAs layers by ion irradiation", JAP, 91, 6585, 2002

P-doping – Auger

- Device with p-doped barriers have larger T₀
- $\rm R_{Auger}$ larger in doped than in undoped devices but $\rm R_{Auger} \downarrow$ as Temperature \uparrow
- Trade T_0 with J_{th} ...

P-doping

Doping [acc in QD]	0	6	12	18	
Transparency current density [A/cm ²]	45	50	70	75	
Threshold current density [A/cm ²]	increases				
Internal loss [cm ⁻¹]	2-3	2-4	5-9	12-14	
Internal differential efficiency [%]	55	65	75	90	
g _{max} [cm ⁻¹]	9-15	10-16	16-24	15-25	
f _{3dB max} [GHz]	1.6	3.8	3.6	5.1	
Modulation efficiency [GHz/mA ^{1/2}]	0.36	0.7	0.73	0.75	
dG/di [cm ⁻¹ /mA]	0.22	0.32	0.39	0.66	

Table reproduced from: Alexander et al., "Systematic Study of the Effects of Modulation p-Doping on 1.3µm Quantum-Dot Lasers", JQE, vol. 43, no. 12, 2007

Received June 19, 2016; accepted July 13, 2016; published online August 2, 2016

We report the first demonstration of a hybrid silicon quantum dot (QD) laser, evanescently coupled to a silicon waveguide. InAs/GaAs QD laser structures with thin AlGaAs lower cladding layers were transferred by direct wafer bonding onto silicon waveguides defining cavities with adiabatic taper structures and distributed Bragg reflectors. The laser operates at temperatures up to 115 °C under pulsed current conditions, with a characteristic temperature T_0 of 303 K near room temperature. Furthermore, by reducing the width of the GaAs/AlGaAs mesa down to 8 µm, continuous-wave operation is realized at 25 °C. © 2016 The Japan Society of Applied Physics

