

# Dressing Requirements & Instructions per Application



# Recommended Dressing per Application

#### General:

Substrate matrices and quality requirements may vary and be different from customer to customer.

The ADT recommended dressing procedures are general / generic recommendations based on years of experience in the market place. They are a good starting point for each application.

Final optimization of the dressing procedure should be performed at the customer site in a production mode



# **Recommended Dressing per Application**

# **Application - Plastic BGA**

Most BGA type applications require no specific dressing. Customers are starting to dice on production wafers, some at top production feed rate and some by an override process.

<u>Blade Used</u> – For tape mounting – Metal Sintered – ADT Matrices –95, 29, 62, 02 For tapeless mounting – Metal Sintered – ADT Matrix 42 <u>Override recommendation:</u> Override media – Production BGA substrate

Recommended override parameters:-Spindle speed – Production speed 30-40Krpm Feed rate – Start at 10mm/sec going up by 5mm/sec increments, making 5x cuts at each feed rate, going up to production speed. Cut depth – Use production depth Index – Use substrate index









# Application - QFN - H.E. - Lead / Tin (Matte) (Pb / Sn) coating

Blade used – Resin –E- & -T-series Dressing media – Silicon Carbide – 320 mesh Dressing media geometry – 90 x 25 x 3mm Dressing media P/N – 00767-0320-003

| Dressing parameters    | Process          |                  |  |
|------------------------|------------------|------------------|--|
| <u>v</u> ;             | 2"               | 3"               |  |
| Spindle speed – (Krpm) | 22               | 15               |  |
| Feed rate – mm/sec     | 10 / 10x cuts    | 10 / 10x cuts    |  |
|                        | 20 / 5x cuts     | 20 / 5x cuts     |  |
|                        | 40 / 5x cuts     | 40 / 5x cuts     |  |
|                        | 60 / 5x cuts     | 60 / 5x cuts     |  |
|                        | 80 / 5x cuts     | 80 / 5x cuts     |  |
| Cut depth – (mm)       | Production + 0.2 | Production + 0.2 |  |
| Cut length – (Meters)  | ~1-1.5           | ~1-1.5           |  |
| Index –                | 2x blade Thick.  | 2x blade Thick.  |  |





Note – Perform height only after the dressing process is completed

ADT = Dicing III Advanced Dicing Technologies



# Application - QFN - H.E. - Nickel Palladium (Ni / Pd) coating

Blade used – <u>Resin – E- & -T- series</u> Dressing media – Silicon Carbide – 320 mesh Dressing media geometry – 90 x 25 x 3mm Dressing media P/N – 00767-0320-003

| Dressing parameters    | Process          |                  |  |  |
|------------------------|------------------|------------------|--|--|
| <u>v</u> ;             | 2"               | 3"               |  |  |
| Spindle speed – (Krpm) | 22               | 15               |  |  |
| Feed rate – mm/sec     | 10 / 10x cuts    | 10 / 10x cuts    |  |  |
|                        | 20 / 5x cuts     | 20 / 5x cuts     |  |  |
|                        | 40 / 5x cuts     | 40 / 5x cuts     |  |  |
|                        | 60 / 5x cuts     | 60 / 5x cuts     |  |  |
|                        | 80 / 5x cuts     | 80 / 5x cuts     |  |  |
| Cut depth – (mm)       | Production + 0.2 | Production + 0.2 |  |  |
| Cut length – (Meters)  | ~1-1.5           | ~1-1.5           |  |  |
| Index –                | 2x blade Thick.  | 2x blade Thick.  |  |  |



| الحدة العدة الالدة المتدا المتدا | all a late a case and a reality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | a series and a series of the s |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TILL FRANK CLI                   | TTTTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Note – Perform height only after the dressing process is completed

Advanced Dicing Technologies



<u>Application</u> – Power QFN Blade used – <u>Resin –E- series</u> Dressing media – Silicon Carbide – 320 mesh Dressing media geometry – 90 x 25 x 5mm Dressing media P/N – 00767-0320-005

| Dressing parameters    | Process          |
|------------------------|------------------|
|                        | 3"               |
| Spindle speed – (Krpm) | 12-16            |
| Feed rate – mm/sec     | 10 / 10x cuts    |
|                        | 20 / 10x cuts    |
|                        | 40 / 10x cuts    |
| Cut depth – (mm)       | Production + 0.2 |
| Cut length – (Meters)  | ~1-1.5           |
| Index –                | 2x blade Thick.  |







# <u>Application</u> – PCB (LED Packages)

Blade used – Nickel Serrated, 2" O.D. x "T", "V" & "Z" matrices x 10, 13, & 17mic. Grit x .003"-.008" thick Dressing media – Green Silicon Car. 600mesh Dressing media geometry - 90 x 25 x 2mm or 3mm Dressing media P/N – 767-0600-002 or -003





| Dressing parameters:- | Process                                              |  |  |  |
|-----------------------|------------------------------------------------------|--|--|--|
| Spindle speed –       | 25-35Krpm                                            |  |  |  |
| Feed rate -           | 10mm/sec 3x cuts, 20mm/sec 3x cuts, 40mm/sec 3x cuts |  |  |  |
|                       | 60mm/sec 3x cuts, 80mm/sec 3x cuts, 100mm/sec 3cuts  |  |  |  |
| Cut depth -           | Production + 0.2mm                                   |  |  |  |
| Cut length –          | ~0.5meter                                            |  |  |  |
| Index –               | 2x blade Thick.                                      |  |  |  |





<u>Application</u> – Ceramic BGA Blade used - Resin, 2" or 4" O.D. X Matrices K or R x 45 – 75mic diamond grit x .006" - .020" thick Dressing media – Green Silicon Car. 600mesh Dressing media geometry - 90 x 25 x 2mm or 3mm Dressing media P/N – 767-0600-002 or -003



| Dressing parameters:- | 2" O.D.                                           | 4" O.D.    |  |  |
|-----------------------|---------------------------------------------------|------------|--|--|
| Spindle speed –       | 25 – 30Krpm                                       | 8 – 12Krpm |  |  |
| Feed rate –           | 2mm/sec 2x cuts, 4mm/sec 2x cuts, 6mm/sec 2x cuts |            |  |  |
|                       | 8mm/sec 2x cuts, 10mm/sec                         | 2x cuts    |  |  |
| Cut depth -           | Production + 0.2mm                                |            |  |  |
| Cut length –          | 250mm                                             |            |  |  |
| Index –               | Blade thickness x 2                               |            |  |  |





**Glass Applications general:** 

The market faces many glass applications with different thickness and material variations.

The following are general dressing recommendations. For special glass coatings or surface finishes consult the factory.

Glass up to 1mm thick can be diced with both resin & metal Sintered blades. Glass over 1mm we recommend to use resin type blades.





Application – Glass using resinoid blades Blade used – Resin Matrices QUP, QKP & QIP x 2", 3" & 4" O.D 15-45mic. diamond grit x .003" - .020" thick Dressing media – Green Silicon Car. 600mesh – 320 for grits over 30mic Dressing media geometry - 90 x 25 x 2mm or 3mm or 5mm Dressing media P/N – 767-0600-002 or -003 or – 005



767-0320-003 or -005 - for over 30mic grit

|                                  | Glass thickness range |           |            |          |          |           |             |           |
|----------------------------------|-----------------------|-----------|------------|----------|----------|-----------|-------------|-----------|
| <b>Dressing parameters:-</b>     | Up to (               | ).5mm     | 0.5 to 1mm |          | 1 – 2mm  |           | 2 – 4mm     |           |
| Spindle Dia.                     | 2"                    | 4"        | 2"         | 4"       | 2"       | 4"        | 2"          | 4"        |
| Spindle speed – Krpm             | 20-30                 | 8-12      | 20-30      | 8-12     | 18-25    | 8-12      | 18-25       | 8-12      |
| Feed rate - mm/sec,              | 2, 4, 6               | x 2 cuts  | 2, 4 ,6 2  | c 2 cuts | 2, 4, 6, | x 2 cuts  | 1, 2, 3, 4, | 5, 2 cuts |
| Cut depth - <sup>cut / F.R</sup> | Pro. Sub              | .+0.2mm   | Pro. Sub   | .+0.2mm  | Pro. Sub | .+0.2mm   | Pro. Sub    | .+0.2mm   |
| Index –                          | Blade t               | hick. x 2 | Blade th   | ick. x 2 | Blade t  | nick. x 2 | Blade th    | ick. x 2  |





Application – Glass using metal sintered blades Blade used – Sintered matrices –M55, -M96 x 2" O.D. 10, 13, 17, 25, 30mic. diamond grit x .003" - .010" thick Dressing media – Green Silicon Car. 600mesh Dressing media geometry - 90 x 25 x 2mm or 3mm or 5mm Dressing media P/N – 767-0600-002 or -003 or – 005

|                       | Glass thickness range |                     |  |  |  |
|-----------------------|-----------------------|---------------------|--|--|--|
| Dressing parameters:- | Up to 0.5mm           | 0.5 to 1mm          |  |  |  |
| Spindle Dia.          | 2"                    | 2"                  |  |  |  |
| Spindle speed – Krpm  | 20                    | 20                  |  |  |  |
| Feed rate - mm/sec,   | 2,3,4,5, 6 x 2 cuts   | 2, 4, 5, 6 x 2 cuts |  |  |  |
| Cut depth -           | Pro. Sub.+0.2mm       | Pro. Sub.+0.2mm     |  |  |  |
| Index –               | Blade thick. x 2      | Blade thick. x 2    |  |  |  |







Application – Hard Alumina Blade used – Resin Matrices KUP, RUP x 2", & 4" O.D 45 - 88mic. diamond grit x .006" - .020" thick Dressing media – Green Silicon Car. 320mesh Dressing media geometry - 90 x 25 x 2mm or 3mm or 5mm Dressing media P/N – 767-0320-002 or -003 or – 005

| )<br>thick |                 |
|------------|-----------------|
| UNICK      |                 |
| 5mm        |                 |
|            | 0982 25KV 5990m |

|                                  | Glass thickness range |            |            |          |            |                  |            |          |
|----------------------------------|-----------------------|------------|------------|----------|------------|------------------|------------|----------|
| <b>Dressing parameters:-</b>     | Up to (               | ).5mm      | 0.5 to     | 1mm      | 1 – 3      | 2mm              | 2 –        | 4mm      |
| Spindle Dia.                     | 2"                    | 4"         | 2"         | 4"       | 2"         | 4"               | 2"         | 4"       |
| Spindle speed – Krpm             | 18-30                 | 8-12       | 18-30      | 8-12     | 18-30      | 8-12             | 18-30      | 8-12     |
| Feed rate - mm/sec,              | 2, 4, 6, 8            | 3 x 2 cuts | 2, 4 ,6, 8 | x 2 cuts | 2, 4, 6, 8 | 3 x 2 cuts       | 2, 4, 6, 8 | x 2 cuts |
| Cut depth - <sup>cut / F.R</sup> | Pro. Sub              | .+0.2mm    | Pro. Sub   | .+0.2mm  | Pro. Sub   | .+0.2mm          | Pro. Sub   | .+0.2mm  |
| Index –                          | Blade t               | hick. x 2  | Blade th   | ick. x 2 | Blade t    | <b>hick. x 2</b> | Blade thi  | ick. x 2 |

Note – Perform height only after the dressing process is completed

ADT = Dicing



Application – Quartz (SAW filters others) Blade used – Resinoid 2" – Matrices KUP, QUP x 30-45mic. grit x .006" - .012" thick Dressing media – Green Silicon Car. 600mesh Dressing media geometry - 90 x 25 x 2mm or 3mm Dressing media P/N – 767-0600-002 or -003

|                       | Quartz thickness range  |                      |  |  |
|-----------------------|-------------------------|----------------------|--|--|
| Dressing parameters:- | 0.2 - 0.5mm             | 0.5 to 1mm           |  |  |
| Spindle Dia.          | 2"                      | 2"                   |  |  |
| Spindle speed – Krpm  | 18 - 20                 | 20 - 22              |  |  |
| Feed rate - mm/sec,   | 1, 2, 3, 4, 5, x 2 cuts | 1, 2, 4, 5, x 2 cuts |  |  |
| Cut depth -           | Pro. Sub.+0.2mm         | Pro. Sub.+0.2mm      |  |  |
| Index –               | Blade thick. x 2        | Blade thick. x 2     |  |  |







Application – LiNb03 & LiTa03 Blade used - Nickel 2" O.D. x 3-6 & 4-8mic. Grit x .002"-.003" thick - Resinoid 2" – Matrices QUP, QKP & KUP x 15 & 20mic. grit x .003" - .006" thick Dressing media – For Nickel – Silicon carbide (Dark) – 600 mesh For Resinoid - Green Silicon Car. 600mesh Dressing media geometry - Ni. - 75 x 75 x 1mm, Resin - 90 x 25 x 2mm or 3mm Dressing media P/N – Ni. – 767-0000-001, Resin 767-0600-002 or -003

| Dressing parameters:- | Nickel                           | Resinoid                          |  |  |
|-----------------------|----------------------------------|-----------------------------------|--|--|
| Substrate thickness   | 0.2 - 1mm                        | 0.2 - 2mm                         |  |  |
| Spindle Dia.          | 2"                               | 2"                                |  |  |
| Spindle speed – Krpm  | 30Krpm                           | 25-30Krpm                         |  |  |
| Feed rate - mm/sec,   | 2 x 10 cuts, 5x5 cuts & 8 x 1cut | 2 x 2 cuts, 4 x 2 cuts, 8 x 2cuts |  |  |
| Cut depth -           | .002" .005" Pr.+ 0.2mm           | Production + 0.2mm                |  |  |
| Index –               | Blade thick. x 2                 | Blade thick. x 2                  |  |  |

Dicing

iced Dicing Technologie



Application – LTCC Blade used – Sintered 2" O.D. Matrices M94 & M50 x 15 - 35mic. Grit x .002"-.003"thick Resinoid 2" – Matrices QUP, QKP & KUP x 35-53mic. grit x .006" - .008" thick Dressing media – For Sintered – Green Silicon carbide 600 mesh

- For Resinoid - Green Silicon Car. 320 mesh

Dressing media geometry - 90 x 25 x 2mm or 3mm

Dressing media P/N – Sintered - 767-0600-002 or -003, Resin 767-0320-002 or -003

Dressing parameters:-M. Sintered Resinoid Substrate thickness 0.2 - 2mm 0.5 - 2mm Spindle Dia. 2" 2" Spindle speed – Krpm 32-38 28-30 Feed rate - mm/sec, 2 x10cuts. 4x5cuts & 6x 5cuts 5 x 5 cuts, 8 x5 cuts & 5 x 1 cut cut / F.R Cut depth -Pro. Sub.+0.2mm .002" .005" Pr.+ 0.2mm Index – Blade thick. x 2 Blade thick. x 2

Note – Perform height only after the dressing process is completed

Dicing

Advanced Dicing Technologies



Application – HTCC Blade used – Sintered – 2" O.D. Matrices M94 & M50 x 35-50mic. Grit x .005" - .008" thick Dressing media – Green Silicon Carbide – 320 mesh Dressing media geometry – 90 x 25 x 2 or 3mm Dressing media P/N – 00767-0320-002 or - 003

| Dressing parameters   | Process                                 |
|-----------------------|-----------------------------------------|
| Spindle speed –       | 20-30Krpm                               |
| Feed rate – mm/sec    | 5, 10, 15, 20, 25, 30 x 4 cuts per F.R. |
| Cut depth – (mm)      | Production + 0.2mm                      |
| Cut length – (Meters) | 0.6 meter                               |
| Index –               | Blade thickness x 2                     |









#### Application – Silicon wafers

Blade used – Nickel (Annular) 2" O.D. x 2-4, 3-6, 4-6mic. x .0012"-.002" thick Dressing media – Silicon Carbide (Dark) 600 mesh Dressing media geometry – 75 x 75 x 1mm Dressing media P/N – 767-0000-001

| Dressing parameters:- | Step # 1         | Step # 2           | Step # 3           | Step # 4                                      |
|-----------------------|------------------|--------------------|--------------------|-----------------------------------------------|
| Spindle speed –       | 35-45Krpm        | 35-45Krpm          | 35-45Krpm          | 35-45Krpm                                     |
| Feed rate - inch/sec  | 6"               | .2"                | .5"                | On blank Sil. wafer<br>Start at .1". cont. at |
| Cut depth -           | .002"            | Production + .002" | Production + .002" | .2" steps up to pro.                          |
| Cut length –          | 10 x 75=750mm    | 10 x 75=750mm      | 10 x 75=750mm      | speed depending<br>on cut quality             |
| Index –               | Blade Thick. X 2 | Blade Thick. X 2   | Blade Thick. X 2   | Blade Thick. X 2                              |

+ Cut depth = production depth + .001"





<u>Application</u> – Silicon on Glass Blade used – Resin – 2" O.D. x matrices QUP & QKP x 25-35mic. Grit x .006"-.010" thick Dressing media – Silicon Carbide – 600 mesh Dressing media geometry – 90 x 25 x 3 or 5mm Dressing media P/N – 00767-0600-003 or -005

| Dressing parameters    | Process                |
|------------------------|------------------------|
| Spindle speed – (Krpm) | 25-30                  |
| Feed rate – mm/sec     | 1 x 2 cuts, 2 x 2 cuts |
|                        | 3 x 2 cuts, 5 x 2 cuts |
| Cut depth – (mm)       | Production + 0.2mm     |
| Cut length –           | 100mm                  |
| Index –                | Blade Thickness x 2    |





# <u>Application</u> – Tic – Magnetic head General:

This process involves thin blades with fine diamond grits. The quality criteria's are challenging and require unique dressing processes which are in house developed and are confidential for each customer.

The dressing process involves O.D. grinding on cylindrical grinders and than preliminary dressing on the dicing saws Using fine silicon carbide or AI. Oxide dressing medias and an override process on Tic. Blank material to confirm cut quality.

licing

The following recommended dressing procedures were developed and used successfully in ADT during blade optimization for some key magnetic head customers.



### <u>Application</u> – Tic – Magnetic head Parting process

Blade used – Nickel – 4.3" O.D. x 3-6 & 4-6mic. Grit x special matrix x 0.060 - 0.100mm thick Dressing media – Silicon Carbide – 600 mesh Dressing media geometry - 90 x 25 x 3mm Dressing med

| Dressing media P/N – 00                  | 0767-0600-003                                              |  |
|------------------------------------------|------------------------------------------------------------|--|
| Dressing parameters                      | Process                                                    |  |
| Spindle speed – (Krpm)                   | 9                                                          |  |
| Feed rate – mm/sec<br>x Cut depth – (mm) | 2 x 5 cuts x 0.050 c. depth<br>2 x 2 cuts x 0.550 c. depth |  |
| Cut length –                             | 175mm                                                      |  |
| Index –                                  | Blade Thickness x 3                                        |  |









Dressing – Silicon carbide 600 mesh

- Spindle 9Krpm
- 5x cuts at cut depth of 0.050mm
- 2x cuts at cut depth of 0.550mm
- Feed rate 2mm/sec

# <u>Application</u> – Tic – Magnetic head <u>Process: Row Slicing</u>

Blade used – Nickel – 4.3" O.D. x 4–8, 10, 13mic. Grit x special matrix x 0.090 – 0.120mm thick Dressing media – Silicon Carbide – 600 mesh Dressing media geometry – 90 x 25 x 3mm Dressing media P/N – 00767-0600-003

| Dressing parameters                      | Process                                                    |
|------------------------------------------|------------------------------------------------------------|
| Spindle speed – (Krpm)                   | 8 - 9                                                      |
| Feed rate – mm/sec<br>x Cut depth – (mm) | 2 x 6 cuts x 0.050 c. depth<br>2 x 2 cuts x 0.650 c. depth |
| Cut length –                             | 200mm                                                      |
| Index –                                  | Blade Thickness x 3                                        |







# <u>Application</u> – Green ceramic

Green ceramic or unfired ceramic requires a different dicing mechanism of using nickel electroformed blades or Tungsten carbide saw blades. Both with nickel blades and with T. carbide saw blades no dressing is required.

No real diamond exposing is needed on nickel blades and on T. carbide blades any dressing will actually damage the blade buy loosing the sharpness of the teeth.

So directly dicing production substrate can be performed





<u>Application</u> – PZT (Ultrasound Sensors) Blade used – Nickel – 2" O.D. x 3-6 & 4-8mic. Grit x Low Dia.% x 0.020– 0.075mm thick Dressing media – Silicon Carbide – 600 mesh up to 3000 mesh Dressing media geometry – 90 x 25 x 3mm 75 x 75 x 1mm and others

Most PZT customers developed their own dressing process which is Usually confidential. The bellow are generic guide lines for a new user.

| Dressing parameters                             | Process                                                                                                                                               |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spindle speed – (Krpm)                          | 20-30                                                                                                                                                 |
| Feed rate on Sil C mm/sec<br>x Cut depth - (mm) | 2 x 5 cuts x 0.050 c. depth<br>2 x 2 cuts x prod. c. depth                                                                                            |
|                                                 | Start at production F.R. (1-3mm/sec)<br>x cut depth of 0.10mm. Change cut<br>depth by steps of 0.050mm every<br>5 cuts till reaching production depth |
| Cut length – To be optimized                    | 5 cuts in reaching production depth                                                                                                                   |
| Index – Blade Thick. x 3                        |                                                                                                                                                       |
|                                                 |                                                                                                                                                       |

= Dicing

III Advanced Dicing Technologies