Etching Gold using Oxford Ion Mill Tool

Object: To get the etch rate and selectivity (Al₂O₃ as an etch mask), as well as etch profile, of Au by using Oxford Ion Mill tool.

Experimental:

1) **Wafer Clean**: two 4" Si wafers cleaned by a) soaking in acetone (2' in ultrasonic bath) and methanol (1' in ultrasonic bath), then, DI water rinse; b) dipping them in buffered HF in 1', then, DI water rinse and nitrogen gas blow dry.

2) Depositing Ti/Au (10/500 nm: nominal thickness) using E-beam#4.

- 3) Lithography for making the etch pattern:
- a) Gasonics: #3 for 3 minutes.
- b) Spinning-on HMDS: 3000 rpm for 30 s.
- c) Spinning-on SF-8 (PMGI): 1500 rpm for 40 s.
- d) Bake at 200 C for 3 minutes.
- e) Spinning-on SPR955-0.9: 3000 rpm for 30 s.
- f) Bake at 95 C for 90 s.

g) Exposing using Auto-stepper200 for shooting an 11X11 array with 0.38 s (Recipe name: Ning) using the calibration reticle.

- h) Post Exposure bake at 110 C for 90 s.
- i) Development in AZ300MIF for 2 minutes.
- j) O₂ plasma descum 300mT/100W 60 s.
- 4) **Depositing** Al₂O₃ (target thickness: 200 nm, actual thickness: 206 nm, Tooling factor: 149.2) using E-beam#2.

5) Lifting-off Al₂O₃: a) soaking in 1165 striper in 80 C hot-plate for 4h40m; b) soaking in fresh 1165 in 70 C hot-water ultrasonic wave bath for 5 minutes (ultrasonic wave was on); c) soaking in Isopropanol in room-temperature water ultrasonic wave bath for 3 minutes (ultrasonic wave was on), then, DI water rinse and nitrogen gas blow dry; d) Gasonics: recipe: #3 for 3 minutes.

6) Cleaving the wafer into sample pieces for ion-mill.

Results:

Table 1. Etch rate and selectivity (Au/Al₂O₃), and side-wall angle of Au under different ion-mill conditions (both Ar flow rates to neutralizer and beam are 5 sccm; platen and chamber wall temperatures are 10 and 40 C, respectively; platen rotation speed is 20 rpm).

Sample#	date	In (mA)	Prf (W)	lb (mA)	Vb (V)	Va (V)	Incident	Etch Time	Etch Rate	Etch Selectivity	Side-wall angle
							Angle (°)	(minute)	(nm/min)	(Au/Al ₂ O ₃)	(°)
Au#1B-00	7/14/2015	unetched, Al ₂ O ₃ Thickness=206 nm									
Au#1B-01	7/14/2015	250	250	50	500	500	-15	15	28.7	13.9	65.9
Au#1B-02	7/14/2015	250	250	150	500	500	-15	3	103.3	12.9	62.6
Au#1B-03	7/14/2015	250	250	150	500	500	-30	3	100	4.5	72.5
Au#1B-04	7/16/2015	250	250	150	500	500	-24.2	3	102.7	5.6	70
Au#1B-05	7/16/2015	250	250	150	500	500	24.2	3	100	5.2	72.3
Au#1B-06	7/22/2015	250	250	150	500	500	0	3.5	114.3	7.9	62.2
Au#1B-07	7/22/2015	250	250	150	500	500	-27.8	3.5	97.7	5.6	72.1
Au#1B-08	7/22/2015	250	250	150	500	500	27.8	3.5	94.6	4.8	76
Au#1B-09	8/25/2015	250	200	50	500	500	-27.8	14	25.6	6.2	72.1
Au#1B-10	8/25/2015	250	200	50	500	500	27.8	14	25.4	4.5	74.6
Au#1B-11	9/11/2015	250	200	100	500	500	27.8	7	56.9	5.1	75.1
Au#1B-12	9/11/2015	250	200	100	500	500	-27.8	7	58.4	6.5	73.5
Au#1B-13	9/16/2015	250	200	150	350	500	27.8	5.5	76.7	4.3	72.5
Au#1B-14	9/16/2015	250	200	150	200	500	27.8	7	49	4.6	70.4
Au#1B-16	9/21/2015	250	250	200	1000	500	-27.8	2.3333333333	163	6.4	74.8
Au#1B-17	9/24/2015	250	250	150	1000	500	27.8	3.5	106	5.3	77.9
Au#1B-18	9/24/2015	250	250	150	750	500	27.8	4	108	4.9	76
Au#1B-19	9/24/2015	250	250	100	1000	500	27.8	5	63	7.2	77.1
Au#1B-20	9/24/2015	250	250	50	1000	500	27.8	10	32.3	4.7	78
Au#1B-21	10/8/2015	250	200	25	1000	500	27.8	20	13	4.5	78.3

Figure 1 Cross-section of Au layer and Al₂O₃ mask pattern before ion-mill. The average mask thickness and sidewall angle are 206 nm and 65.8°, respectively.

Figure 2 (a) and (b) Cross-section of the milled sample Au01 with $I_n=250$ mA, $P_{rf}=250$ W, $I_b=50$ mA, $V_b=500$ V, $V_a=500$ V, incident angle=-15°, and time=15 minutes.

Figure 3 (a) and (b) Cross-section of the milled sample Au02 with $I_n=250$ mA, $P_{rf}=250$ W, $I_b=150$ mA, $V_b=500$ V, $V_a=500$ V, incident angle=-15°, and time=3 minutes.

Figure 4 (a) and (b) Cross-section of the milled sample Au03 with $I_n=250$ mA, $P_{rf}=250$ W, $I_b=150$ mA, $V_b=500$ V, $V_a=500$ V, incident angle=-30°, and time=3 minutes.

Figure 5 (a) and (b) Cross-section of the milled sample Au04 with $I_n=250$ mA, $P_{rf}=250$ W, $I_b=150$ mA, $V_b=500$ V, $V_a=500$ V, incident angle=-24.2°, and time=3 minutes.

Figure 6 (a) and (b) Cross-section of the milled sample Au05 with $I_n=250$ mA, $P_{rf}=250$ W, $I_b=150$ mA, $V_b=500$ V, $V_a=500$ V, incident angle=24.2°, and time=3 minutes.

Figure 7 (a) and (b) Cross-section of the milled sample Au06 with $I_n=250$ mA, $P_{rf}=250$ W, $I_b=150$ mA, $V_b=500$ V, $V_a=500$ V, incident angle=0°, and time=3.5 minutes.

Figure 8 (a) and (b) Cross-section of the milled sample Au07 with $I_n=250$ mA, $P_{rf}=250$ W, $I_b=150$ mA, $V_b=500$ V, $V_a=500$ V, incident angle=-27.8°, and time=3.5 minutes.

Figure 9 (a) and (b) Cross-section of the milled sample Au08 with $I_n=250$ mA, $P_{rf}=250$ W, $I_b=150$ mA, $V_b=500$ V, $V_a=500$ V, incident angle=27.8°, and time=3.5 minutes.

Figure 10 (a) and (b) Cross-section of the milled sample Au09 with $I_n=250$ mA, $P_{rf}=250$ W, $I_b=50$ mA, $V_b=500$ V, $V_a=500$ V, incident angle=-27.8°, and time=14 minutes.

Figure 11 (a) and (b) Cross-section of the milled sample Au10 with $I_n=250$ mA, $P_{rf}=250$ W, $I_b=50$ mA, $V_b=500$ V, $V_a=500$ V, incident angle=27.8°, and time=14 minutes.

Figure 12 (a) and (b) Cross-section of the milled sample Au11 with In=250mA, Prf=250W, Ib=100mA, Vb=500V, Va=500V, incident angle=27.8°, and time=7 minutes.

Figure 13 (a) and (b) Cross-section of the milled sample Au12 with $I_n=250$ mA, $P_{rf}=250$ W, $I_b=100$ mA, $V_b=500$ V, $V_a=500$ V, incident angle=-27.8°, and time=7 minutes.

Figure 14 (a) and (b) Cross-section of the milled sample Au13 with $I_n=250$ mA, $P_{rf}=200W$, $I_b=150$ mA, $V_b=350V$, $V_a=500V$, incident angle=27.8°, and time=5.5 minutes.

Figure 15 (a) and (b) Cross-section of the milled sample Au14 with In=250mA, Prf=200W, Ib=150mA, Vb=200V, Va=500V, incident angle=27.8°, and time=7 minutes.

Figure 16 (a) and (b) Cross-section of the milled sample Au16 with $I_n=250$ mA, $P_{rf}=250$ W, $I_b=200$ mA, $V_b=1000$ V, $V_a=500$ V, incident angle=-27.8°, and time=140 s.

Figure 17 (a) and (b) Cross-section of the milled sample Au17 with $I_n=250$ mA, $P_{rf}=250$ W, $I_b=150$ mA, $V_b=1000$ V, $V_a=500$ V, incident angle=27.8°, and time=3.5 minutes.

Figure 18 (a) and (b) Cross-section of the milled sample Au18 with In=250mA, Prf=250W, Ib=150mA, Vb=750V, Va=500V, incident angle=27.8°, and time=4 minutes.

Figure 19 (a) and (b) Cross-section of the milled sample Au19 with $I_n=250$ mA, $P_{rf}=250$ W, $I_b=100$ mA, $V_b=1000$ v, $V_a=500$ V, incident angle=27.8°, and time=5 minutes.

Figure 20 (a) and (b) Cross-section of the milled sample Au20 with $I_n=250$ mA, $P_{rf}=200$ W, $I_b=50$ mA, $V_b=1000$ v, $V_a=500$ V, incident angle=27.8°, and time=10 minutes.

Figure 21 (a) and (b) Cross-section of the milled sample Au21 with I_n =250mA, P_{rf} =200W, I_b =25mA, V_b =1000 v, V_a =500V, incident angle=27.8°, and time=20 minutes.

Figure 22 Etch rate of gold and selectivity (Au/Al₂O₃) as functions of Ar-ion Incident angle while keeping I_n =250mA, P_{rf} =250W, I_b =150mA, V_b =500V, and V_a =500V.

Figure 23 Etched side-wall angle of gold as a function of Ar-ion Incident angle while keeping I_n =250mA, P_{rf} =250W, I_b =150mA, V_b =500V, and V_a =500V.

Figure 24 Etch rate and etch selectivity of gold as functions of beam current under the conditions of $I_n=250$ mA, $V_b=500$ v, $V_a=500$ v, Ar Flow-rate=5 sccm for both neutralizer and beam, platen temperature=10°C, chamber wall temperature=40°C, and platen rotation=20 rpm.

Figure 25 Sidewall angle of etched gold as a function of beam current under the conditions of $I_n=250$ mA, $V_b=500$ v, $V_a=500$ v, Ar Flow-rate=5 sccm for both neutralizer and beam, platen temperature=10°C, chamber wall temperature=40°C, and platen rotation=20 rpm.

Figure 26 Etch rate and etched sidewall angle of gold as functions of beam voltage under the conditions of $I_n=250$ mA, $I_b=150$ mA, $V_a=500$ v, incident angle=27.8°, Ar Flow-rate=5 sccm for both neutralizer and beam, platen temperature=10°C, chamber wall temperature=40°C, and platen rotation=20 rpm.

Figure 27 Etch selectivity (Au/Al2O3) as a function of beam voltage under the conditions of In=250mA, Ib=150 mA, Va=500 v, incident angle=27.8°, Ar Flow-rate=5 sccm for both neutralizer and beam, platen temperature=10°C, chamber wall temperature=40°C, and platen rotation=20 rpm.

Figure 28 Etch rate and etch selectivity of gold as functions of beam current under the conditions of $I_n=250$ mA, $V_b=1000$ v, $V_a=500$ v, incident angle=27.8°, Ar Flow-rate=5 sccm for both neutralizer and beam, platen temperature=10°C, chamber wall temperature=40°C, and platen rotation=20 rpm.

Figure 29 Sidewall angle of etched gold as a function of beam current under the conditions of $I_n=250$ mA, $V_b=500$ v, $V_a=500$ v, incident angle=27.8°, Ar Flow-rate=5 sccm for both neutralizer and beam, platen temperature=10°C, chamber wall temperature=40°C, and platen rotation=20 rpm.

