HD III Advanced Dicing Technologies Ltd. g Blade Technical Seminar

□ <u>History:</u>

- 4" versus 2" technology
- Separating techniques

Marketing profile & Market segmentation

Manufacturing techniques:

- Nickel Bond
- Steel core Nickel
- Resin Bond
- Metal Sintered
- Diamond selection

Blade characteristics:

Advantages & disadvantages of the different blade binders & blade geometry's

Dressing:

- Principles
- Dressing techniques

Cont.

Process techniques & Parameters:

- Application Characteristics
- Cutting mode
- Clamping methods
- Cooling
- High cooling flange
- Cutting through heavy substrates
- Cutting through into tapes
- Recommended exposure left

Major applications - Material dicing guide:

- Recommended Spindle speed
- Dicing green ceramic
- Special applications:
- Optimizing the cutting process:
- Trouble shooting:

K&S - 775

K&S - 780

ADT III Advanced Dicing Technologies Ltd. Dicing Blade Seminar

ADT - 7900

IAdvanced Dicing Technologies Ltd. Peripheral Products

- 966 Wafer Mounting Stations
- **955 UV Curing Systems**
- 977 Wafer Cleaning Stations
- **937 Re Circulating Spindle Water Chiller**
- 921 Closed Loop Filtration System
 - 947 C02 In-Line injector
- Film Frames and Film Frame Cassettes

III Advanced Dicing Technologies Ltd.

HARD AL. SUBSTRATE DICED WITH A DIAMOND RESINOID BLADE ON THE K+S 784 SAW.

HARD AL. SUBSTRATE SCRIBED WITH A LASER BEAM.

Dicing Seminar

Marketing Profile & Market Segmentation

Market Profile

Instrumentation Optoelectronics & Optics Sensors & Transducers

Data Processing Magnetic Heads

Precision Dicing Systems

Electronics Active Devices Passive devices Packaging

	Market	Instrumentation		Electronics			Data Processing
	Market Segmentation	Sensors & Transducers	Optoelectronics & Optics	Passive Devices	Packaging	Active Devices	Magnetic Heads
	Devices & Applications	 Ultrasound Electro medicine Measurement Instruments Aerospace Automotive Solar Cells 	 Photo Detectors Lasers LED / VLED Fiber Optic Couplers Transceivers Display Panels (LCD, Flat Panels) Facsimile Scan / Print Heads Optical Components 	 Resistors Capacitors Oscillators Signal Fillers Communication & Microwave Thin Film Print Heads 	 PCB PPGA Chip Carriers IC Packaging Hybrid Substrate 	 IC's Transistors Diodes Discrete Devices Power Devices 	 Thin Film (disk) Thick Film (disk) Tape R/W Heads
	Materials	 Piezoelectric Silicon on sapphire (SOS) Calcium Tungsten 	 Quartz Germanium GaAs, Silicon Sapphire Glass Beryllium Fiber Optic 	 Green & Fired Ceramic Alumina Quartz Lithium Niobate Plastic Glass 	 Green & Fired Ceramic Alumina Glass Fiberglass Plastic 	 Silicon Gallium Arsenide Gallium Phosphate Germanium 	 Titanium Carbide (TIC) Ferrite Alumina (TIC)
	Market & Process Highlights	 Medium Volume High Quality High Accuracy Broad Range of Thickness Small to Medium Area (<6"X6") Thin Walls (minimum vibration) Costly Materials 	 Medium/High Volume High Quality High Yield High Accuracy Broad Range of Thickness & Hardness Costly Materials 	 Medium / High Volume High Quality High Yield Medium / High Accuracy Broad Range of Thickness & Hardness 	 Medium / High Volume High Quality High Yield Large Substrate Area (14"X14") Range of Thick. & 	 Medium Volume Die separation Semi-auto Operation Pilot Line, R&D High Quality High Yield 	 Medium / High Volume High Quality High Yield High Accuracy Thin Walls (Minimum Vibration) Land Definition & Separation

ADT III Advanced Dicing Technologies Ltd.

Single Diamond Machining Mechanism

Single Diamond Machining Mechanism

Blade Seminar

Manufacturing Techniques

Blade Seminar

Blade Characteristics

Diamond Selection in blade Manufacturing

Strong, blocky single crystal used in nickel & m. sintered matrices

Friable, irregular shape coated with nickel alloy used in resin

matrices

Diamond Selection in blade Manufacturing

CBN - Cubic Boron Nitride (Borozon) For Grinding and Cutting Ferrous Materials

Standard available Diamonds

Nickel type blades:

2 - 4mic., 3 - 6mic., 4 - 8mic., 10mic., 17mic., 30mic., 50mic.

Resin type blades:

3mic., 6mic. (3000 mesh), 9mic. (1800 mesh), 15mic. (1200 mesh), 20mic. (1000 mesh), 25mic. (800 mesh), 30mic.(600 mesh), 35mic.(400 mesh), 45mic. (325 mesh), 53mic. (270 mesh)
63mic. (230 mesh), 88mic. (170 mesh), 105mic. (140 mesh)

- For special application going up to 200mic.
- Any new diamond grit can be made

Metal sintered blades:

2- 4mic., 3- 6mic., 4- 8mic., 10mic., 17mic., 20mic., 25mic., 30mic., 45mic., 50mic., 63mic., 70mic., 80mic.,105mic.,

• Any new diamond grit can be made

ADT III Advanced Dicing Technologies Ltd.

Metal Sintered blades

Advantages & Disadvantages of blade Binders

Resin

Advantages:

- Cuts almost any material
- Clean and chip free cuts on hard and brittle materials
- Thick blades up to .100" are available
- No need for long dressing
- A variety of different resin matrixes is available
- Any new diamond grit can be made at low cost

Disadvantages:

- Higher blade wear
- The edge geometry is lost sooner
- Relatively lower R.P.M.
- Minimum thickness is .003" depending on diamond grit

Advantages & Disadvantages of blade binders

Nickel

Advantages:

- Very low blade wear (Some time it is a disadvantage)
- Maintaining the edge geometry
- Very good on accurate applications (Magnetic heads)
- Very thin blades can be made .0006" (0.0152mm)

Disadvantages:

- Max thickness .018" .020" (0.45 0.50mm) (Can go thicker with Steel Core blades)
- Long dressing procedure
- High cost of new diamond grits (New plating set-up)
- Can not cut very hard and brittle materials (Overloading)
- Side wear on singulation type application due to min. radial wear. (BGA & similar applications)

Advantages & Disadvantages of blade binders

Hard bond – shorter life

Soft bond – longer life

Advantages & Disadvantages of blade binders

Advantages:

- Lower wear than Resinoid
- Maintaining the edge geometry much longer compare to resin
- Can be lapped to very precise thicknesses
- Very thick blades can be made (Way over .020")
- Stable matrix (Stress free)
- Many different matrices can be made (Softer or harder)
- Any new diamond grit can be made at low cost

Disadvantages:

- Longer dressing compare to Resinoid
- Minimum thickness limitations (New thin product is developed down to 0.030mm)
- Relatively lower R.P.M.

Blade Matrix Characteristics

.025" thick Glass Plate diced with Resinoid blade

Glass Tubes diced with resinoid Blade

.025" thick Hard Al. (99.6%) diced with Resinoid Blade

Blade Geometry

Special edge geometry's (By grinding)

Blade Geometry

Nickel & Metal Sintered

Examples:

4.256" O.D. x 54 Slots 4.600" O.D. x 60 Slots 4.600" O.D. x 16 Slots 4.600" O.D. x 8 Slots

2.188" & 2.250"O.D. x 72 Slots 2.188" & 2.250"O.D. x 16 Slots 2.188" & 2.250"O.D. x 16 Slots 2.188" & 2.250"O.D. x 8 Slots Other O.D. blades x different Slot geometry's are available

Resinoid blades can also be made with Slots

Serrated Blades

.5" Thick Optical prism diced with a Resinoid Blade

Special Grooved Blade - SPG

- Minimizes load and blade wear during the dicing process
- O Min. thickness .012"
- Can be used with a high cooling flange set or with standard flanges

Diamond Combination & Reinforcement in Resin Blades

.002"-.003" .004"min. .002"-.003" **Coarse grit Fine grit Fine grit** Chip free Chip free

E Series III Advanced Dicing Technologies Ltd. Extended Life Resin Blades for QFN

- Low cost versus cut length ration
- Blade life up to ten times longer than standard resins
- **Optimized to provide excellent cut quality** • for the most severe dicing challenges

Designed for thick substrates where a large exposure is needed

 Blades available:

 • Nickel serrated- 5.0"O.D. x 3.5" I.D.

 5.0"O.D. x 3.0" I.D.

 • Resinoid

 5.0"O.D. x 3.5" I.D.

 5.0"O.D. x 3.5" I.D.

 5.0"O.D. x 3.0" I.D.

Green Ceramic diced with Nickel Serrated blade

.6" thick substrate (M.L.C.) diced with a 5" Nickel serrated blade

Heavy Glass bar diced with 5" Resinoid blade

1/2" Ceramic tube diced with 5" Resinoid blade

Dicing Seminar

Dressing

