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Towards THz Transistors and Template Assisted Selective Epitaxy

Brian Markman, University of California, Santa Barbara, CA

Abstract. As 5G (25-100GHz) begins to roll out globally, research must shift focus to
communication systems beyond 5G (=100 GHz). For communications systems to work efficiently
at 100-340 GHz, the transistors that form their foundation must be able to provide gain and low
noise figure at those frequencies. Conseguently, the transstors must operate beyond 1 THz.
However, a highly scaled MOSFET's RF performance is limited by end capacitance while modern
HEMTs are limited by high gate leakage and comparatively less capacitive control of the channel.
We present a new device that combines an intrinsic MOSFET with HEMT-like access regions
operating to and a roadmap to =1 THz. Additionally, template fabrication for template assisted
selective epitaxy (TASE) will be discussed as a route towards higher frequency bipolar transistors,
integration of lll-V on Si, and as a technigue to develop laterally oriented heterojunction devices.
Challenges in template fabrication, basic growth frends, and design considerations will be
discussed.

Biography: Brian Markman graduated in Materials Science and Engineering with a focus on Electronic and Photonic Materials at
Pennsylvania State University in 2015. There he worked on improvement of passie light collection for solar cells, organic micro-disk
lasers, and chemical vapor deposition of 2D materials. In 2016 he joined the Rodwell High Frequency Electronics group at UCSB where he
currently works on THz MOS-HEMTs and Tunnel FETs.
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Abstract. As 5G (25-100GHz) begins to roll out globally, research must shift focus to
communication systems beyond SG (=100 GHz). For communications systems to work efficiently
at 100-340 GHz, the transistors that form their foundation must be able to provide gain and low
noise figure at those frequencies. Conseguently, the transstors must operate beyond 1 THz.
However, a highly scaled MOSFET's RF performance is limited by end capacitance while modern
HEMTs are limited by high gate leakage and comparatively less capacitive control of the channel.
We present a new device that combines an intrinsic MOSFET with HEMT-like access regions
operating to and a roadmap to =1 THz. Additionally, template fabrication for template assisted
selective epitaxy (TASE) will be discussed as a route towards higher frequency bipolar transistors,
integration of lll-V on Si, and as a technigue to develop laterally oriented heterojunction devices.
Challenges in template fabrication, basic growth trends, and design considerations will be
discussed.

Biography: Brian Markman graduated in Materials Science and Engineering with a focus on Electronic and Photonic Materials at
Pennsylvania State University in 2015. There he worked on improvement of passie light collection for solar cells, organic micro-disk
lasers, and chemical vapor deposition of 2D materials. In 2016 he joined the Rodwell High Frequency Electronics group at UCSB where he
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1. If giving a “Tech-Talk”: send a picture or they will FIND one

2. Parents: don’t give kids <18 years old cameras/phones/computers,
it can only bite them in the ass
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MOS-HEMT Introduction

* Beyond 5G Application

* Design Challenges

* Proposed InAs/InP MOS-HEMT Design

2. THz Transistor “Pieces”
* Fabrication Process
* High-k Quality
* Modulation Doped Access Regions
* f; =480 GHz MOS-HEMT demonstration

3. Template Assisted Selective Epitaxy (TASE) Introduction
* Heterogenous Integration & Heterojunction Turning
* Design Challenges & Fabrication Process

4. TASE Examples
* Homo-epitaxy
* Hetero-epitaxy

5. Conclusions
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Motivation — Beyond 5G

* Demand for information/connectivity increasing explosively

spatially-multiplexed mm-wave base stations spatially-multiplexed mm-wave base stations \
(= 1 ™ SR Il mm-wave backhaul @il - mm-wave backhaul e

/ﬁé <Y gt
AT 140~ C— ¢ 39

- or optical backhaul

or optical backhaul

Reprinted with permission of Mark Rodwell

* Industry currently introducing 5G (28, 38, 57-71, 71-86 GHz)
* Beyond 5G requires 100-340 GHz communication systems
* Wireless for End-User and Backhaul will require higher data rates :
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* Requires transistors operate “easily” at these frequencies:
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Motivation — Beyond 5G

* Industry currently introducing 5G (28, 38, 57-71, 71-86 GHz)
* Beyond 5G requires 100-340 GHz communication systems

o

* Requires transistors operate “easily” at these frequencies:
* What is easily? >
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X. Mei et al. IEEE EDL vol. 36, No. 4, 2015."
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Motivation — Beyond 5G

* Industry currently introducing 5G (28, 38, 57-71, 71-86 GHz)
* Beyond 5G requires 100-340 GHz communication systems

—

* Requires transistors operate “easily” at these frequencies:

™ How to increase f_?

fT, Fmax 2 NEED GAIN \
——— MSG/MAG -

N
o

[y
(%2}

Transistor Gain(l
#’_7’________.______‘--

s | fyax=1.5THz
f; = current gain cutoff frequency 5.k \’“
| f; GloGHzl
p— g \
fmax = power gain cutoff frequency A 100 | 1000
Frequency (GHz) :

X. Mei et al. IEEE EDL vol. 36, No. 4, 2015
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Increase f.

 Ideal: Transit Time

f ~ Idm
v 2n(Cygs+Cya)

12
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Increase f.
A L _ 1 .p
* Ideal: Transit Time g g T hs
f, o~ —Ime = =+ Rc+Ry+Ry
Zn(Cgs'I'ng) me mt

13
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Increase f.
A L _ 1 .p
* Ideal: Transit Time g g T hs
f, o~ —Ime = =+ Rc+Ry+Ry
Zn(Cgs'I'ng) me mt

* Reality: Transit + Parasitics

1 (CgS"'ng) (Cgs+ng) (Rs+Rp)
~ + + C R+ R
2T f7 dm dm Rps d( 5 D)

14
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Increase f.
A 1 _ 1 . p
* Ideal: Transit Time g g T hs
f, o~ —Ime = ~ =1 yR;+Ry+R,
T I9me  YImii

* Reality: Transit + Parasitics
1 (CgstCga) n (Cgs+Cga) (Rs+Rp)
2T f7 Im Im Rps

+ Cyq(Rs + Rp)

Increase g,,,; and decrease Rg, Rp and C 5, C g

15
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Increase f,
A 1 _ 1 . p
* Ideal: Transit Time g g T hs
f, o —Ime = ~ =1 yR;+Ry+R,
T I9me  YImii

Increase g,,, ; and decrease Rg
* Reality: Transit +ruorusrcs

1 (CgstCga) n (Cgs+Cga) (Rs+Rp)
2T fr Im 9m Rps

+ Cyq(Rs + Rp)

Increase g,,,; and decrease Rg, Rp and C 4, C g

16
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How to Increase g,, ; » Look to Ballistic FET Theory
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* Electron travels S = D without scattering, can derive IV from E(k)
* High-k roughness/non-epitaxial interface, L, < 30nm

* Independent of L, = except short channel effects

17
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How to Increase g,, ; » Look to Ballistic FET Theory

Ip 3
Wg — I(CGS[ —Vr)) <3m \/q7> \/(CGS VT]I)
[ /
qng Injection velocity
dl
Im = aV:S \/(CGS —Vrl)

* Electron travels S = D without scattering, can derive IV from E(k)
* High-k roughness/non-epitaxial interface, L, < 30nm

* Independent of L, = except short channel effects
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How to Increase g,, ; » Look to Ballistic FET Theory

Ip 8
= (CaslVo VTD(3m W)J(L'GS ~VrD

g
| |

Only ”knOb” IS CGS 1

ol

o/ (CosVi = Vr])

Im =

* Electron travels S = D without scattering, can derive IV from E(k)
* High-k roughness/non-epitaxial interface, L, < 30nm

* Independent of L, = except short channel effects

19
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Tradltlonal FET Scaling Laws (Now Broken)

FET parameter change

gate length decrease 2:1
dielectric equivalent thickness decrease 2:1
channel thickness decrease 2:1
channel state density increase 2:1

contact resistivities decrease 4:1

20



BN JUMP

miiilt ComSenTer

COMMUNICATIONS SENSING TERAHERTZ

FET Scaling Laws (Now Broken)

Wave function has “thickness” FET parameter change
Oxide Channel Back Barrier gate |ength decrease 2:1
B[~~~ T
&E
1 C = ch
tch/z

dielectric equivalent thickness decrease 2:1

™ channel thickness decrease 2:1

channel state density increase 2:1

contact resistivities decrease 4:1

21
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FET Scaling Laws (Now Broken)

Wave function has “thickness” FET parameter change
Oxide Channel Back Barrier gate |ength decrease 2:1
Ef~ "> T
&E
1 C = ch
tch/z
I e | dielectric equivalent thickness decrease 2:1
Fermi Level moves to populate low DOS 5
Pop ™ channel thickness decrease 2:1
i Channel Back Barri : : _
Oxide | Channe ack Barnet ~_— channel state density increase 2:1
/contact resistivities decrease 4:1
o R
El _____ C - gvm*qZ
K o 2mh?

22
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FET Scaling Laws (Now Broken)

Wave function has “thickness” FET parameter change
Oxide Channel Back Barrier gate |ength decrease 2:1
B[~~~ T
&E
1 C = ch
tch/z
I e | o8 dielectric equivalent thickness decrease 2:1
Fermi Level moves to populate low D .
bop ™ channel thickness decrease 2:1
Oxide | Channel Back Barrier _— channel state density increase 2:1
/contact resistivities decrease 4:1
o R
E p===4 pom? Difficult to scale g, as tox and Ly near minimum + other Cg contributors
K B 2mh?

23
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FET Scaling Laws (Now Broken)

S >//<G>\\<
—H

channel
barrier

vertical S/D spacer
== [ow-K dielectric spacer
high-K gate dielectric

FET parameter change

gate length decrease 2:1
dielectric equivalent thickness decrease 2:1
channel thickness decrease 2:1
channel state density increase 2:1

contact resistivities decrease 4:1

Difficult to scale g, as tox and Ly near minimum + other Cg contributors

Highly scaled MOSFETs have large C,,,4 due to packing density
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gate
InAlAs
barrier
source drain
T X 7
/= 1
channel
barrier

-
---
channel
barrier

vertical S/D spacer
== [ow-K dielectric spacer
high-K gate dielectric
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FET Scaling Laws (Now Broken)

FET parameter

change

gate lenoth

decrease 2:1

What about HEMTs ?

dielectric equivalent thickness

decrease 2:1

channel thickness

decrease 2:1

channel state density

increase 2:1

contact resistivities

decrease 4:1

Difficult to scale gy, as tox and Ly near minimum + other Cg contributors

Highly scaled MOSFETs have large C,,,4 due to packing density .
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Towards faster HEMTs

Scaling limit: Gate Insulator Thickness

—

 HEMT: InAlAs barrier: tunneling, thermionic leakage

CBO ~ 0.5eV to InGaAs InAlAs
* Solution: replace InAlAs with high-K dielectric e ",
* CBO >3.0eV to InGaAs

* Target: 2nm ZrO, (¢,=25) vs. 5nm InAlAs (¢,=12) : adequately low leakage Chapoet
* 70% improvement of Cg_ch Substrate

n+ source n+ drain

Channel

Substrate
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Towards faster HEMTs

Scaling limit: Wide E, beneath S/D

 HEMT: InAlAs barrier is under N+ source/drain
e ~100Q-umin R

e Solution: regrowth, place N+ layer on InAs channel
* No barrier between S/D and channel

* Target: Removes 100 Q - um from g, , = 3 mS/um
* ~30% improvement in g, ¢

Wide E; beneath
heavily doped S/D

n+ source |

n+ source

o
I >

S/D Regrowth
directly on channel

miiilt ComSenTer

COMMUNICATIONS SENSING TERAHERTZ

InAlAs

n+ drain

Channel

Substrate

n+ drain

Channel

Substrate
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summary

Want: Need: Need:
Higher frequency systems Gain at Higher Frequencies Faster Transistors

Need:
Increase g, ;
Decrease Rq

Need:
Increase C_¢,
Decrease Cgs & Cgp

28
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Need:
Increase g, ;
Decrease Rq

Higher frequency systems Gain at Higher Frequencies Faster Transistors

Need:
Increase C_¢,
Decrease Cgs & Cgp

T-Gate

High-k

v

I
S/D Regrowth directly on Channel
channel Substrate

29
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2. THz Transistor “Pieces”
* Fabrication Process
e High-k Quality
* Modulation Doped Access Regions
* f: =480 GHz MOS-HEMT demonstration

3. Template Assisted Selective Epitaxy (TASE) Introduction
* Heterogenous Integration & Heterojunction Turning
* Design Challenges & Fabrication Process

4. TASE Examples
* Homo-epitaxy
* Hetero-epitaxy

5. Conclusions
30
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Regrowth Reversal Process

Modulation doped
wide E; region

Link Dummy Gate EBL Ly +100nm Dummy Gate EBL
Regrow S/D Regrow Link L ~2()an/

g
— HSQ >
-
Channel (InAs Channel Channel

Mesa Isolation
Strip Dummy Gate
Digital Etch

l High-k + FGA

Evaporate Gate Metal
High-k Post Metal H, Anneal

Remove High-k
Etch Link Region

C— < ngh-k
S D /
Evaporate S/D m
InAs Evaporate Pads Link it

I

Recessed gate 31
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Need Pieces First

Major Components:

9 cycles TMA + N* \ 100W - 300C

. . . ~35 cycles TEMAZ + H,0 - 300C
1. High quality gate oxide (ZrO ’
gh quality g (Zr0,) Crarnel el | Minimumss
a)  Varistha Chopattana. PhD Dissertation, UCSB, 2016.

InAs [1a,1b 61 mV/d
b)  Sanghoon Lee. PhD Dissertation, UCSB, 2014 7/~5 [iEpila) mV/dec
c)  Cheng-Ying Huang. PhD Dissertation, UCSB, 2015. InGaAs [1c] 63 mV/dec
d)  Hsin-Ying Tseng et al. DRC, paper 2019. InP / InGaAs [1c] 67 mV/dec

] ] InP [1d] 71 mV/dec
2. Modulation doped access region

a) H.B.Joetal Appl. Phys. Expressvol. 12, 2019.
b) Simoné Growth / Klamkin Group InP MOCVD

3. RF Process All Together

a) J.Wuetal IEEE EDL vol. 39, No. 4, 2018.

32
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RF MOSFET RF MOSFET DC Results — Ch3-L1G2SD3

Modulation doped InP
/ High-k
—C— L J u

Channel Channel

®
UMP 5 V\\ UNIVERSITY O F CALIFORNIA SANTA BARBARA
ﬁ J ..\ . ELECTRICAL AND COMPUTER ENGINEERING

Modulation
doped InP

Lin

Link iliiiii

33
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RFMOSFET]  RF MOSFET DC Results — Ch3-L1G2SD3

Modulation doped InP
/ High-k
—C— L J u
Lin

Modulation
doped InP

Channel Channel Link iliiiii
10! Transfer Characteristics Transconductance Output Characteristics 10! Transfer Characteristics Transconductance Output Characteristics
10" =0.1V - 0.5V by 0.1V 51 Lg =22nm ) n Vs = 0.0V - 0.5V by 0.1V | 100 ] Lg =1000nm 0181 y_ =00v-05vbyoav
0.8+
. V. =01V -0.5V by 0.1V 0.16
107} 1 High g, w'y ™ ol
> o 0.8 , ; 0.14
107 F 3 107°F 3
g - - B = o ~ 0.12
< 107 1% z 2 10 1 E z
E < 15r = 06t E = 0.5F 1% i
Z 10t 1 & 3 £ 10 1 £ 5
= ~; ~ = 204 >
= | = - = £0.4f 2 0.08 1
=10 Pooroffcurrent | % i = o4 107y e
0.3f L 1
10 1 10k 0.06 /
-7 | 7L 0.2 0.04
10 Excellent gate 0.5 0.2f 19
10°8F leakage Ly \ / 0.1r 0.02f
10-9 \ = / 0 N L " 0 T L L ' ]0-9 0 s s 0 —— ——— e
-0.2 0 0.2 0.4 -0.2 0 0.2 0.4 0 01 02 03 04 -0.2 0.4 -0.2 0 0.2 0.4 0 01 02 03 04
Vas ™) Vas W) Vis V) v (V) Ves W) Vix

* Pinch off and SS mostly convoluted with S/D leakage = parallel conduction in etch stop
* Excellent gate leakage (I, < 10 pA/um for T-Gate devices, L, < 200nm)
* lon~ 1 mA/um and peak g, . = 2.3 mS/um —> EXCELLENT given thick channel & high-k™




®
ﬁ JUMP Y R e iR ﬂ%ﬁ@ﬁﬂl ComSenTer
— COMMUNICATIONS SENSING TERAHERTZ

RF MOSFET L,=22nm, W, = 20um RF Results — Ch3-L1G2SD3

AR 480 N B N T -
S Ch3-L1G2SD3
360 \‘\
40t |
Py g | FT L 22 nm
2209 £301 s g
£ 0
180 ol
W, 40 pm
10 v ;=0.25V
N o aagamm
S T 8m,e(DC) 2.33 mS/um
Vps (V) Frequency, GHz
Vi mar=0.5V, M'=0.05v| ijj | \\c‘% gm’e(l GHZ) 2.65 mS/IJ.m
126 \‘\ L
40t —
i | asoGH
< < €300 [y
E 72 £ S "
. f 170 GHz
36
10} [v;;=0.20V
' 170 a6Amm . .
se===SS oL n ) Poor f due to gate resistance = T-Gate Necking

Vps (V)

Frequency, GHz

RF measurements & graphs courtesy of Matt Guidry
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RF MOSFET Ch3-L1G2SD3 — Device Comparison

De-embedded ft map Peak de-embedded ft

Ch3-L1G25D3_Dies-W20-H_60nm_Wg40_BM_1 205 40 31162503 Died ’W%%H:6°9T.1W?49-F.M:}
T T T ) \
10| [V, =05V, AV=0.05V a DD[ i
360 i
A
&
osl 315 30
270
= [e1]
E 0.6 2y T
2 °
: L 74 nm 100nm
8
04l foot
135 W
n
10| W
Al
0 W
“ W 40 40
a5 V;5=0.80V \\“ l.l m l.l m
Ie=0.544A/mm ' g
U W

o ol cvnd v e
) 0.4 0.6 i 0.0 0.1 Frle.(Juenc 1%31 100.0 1000.0
Vps (V) quency, f
De-embedded fmax map Peak de-embedded fmax t
Ch3-L1G25D3_Die8-W20-H_60nm_Wg40_BM_1 a0 Ch3-L1G25D3_Die8-W20-H_60nm_Wg40_BM_1
Jr - iz

L0 [, =0.5V, AV=0.05V E o

0.8 360 30 Adi fmax m-
E 06 g s .
< * Do not pay attention to actual numbers = poor
B E © . .

! calibration ISS and bad probes

. b *  Gate resistance is limiting factor on this run
IES:S..SSEXNmm “““
0.4 0.6 0.8 0 80 o1 1o 100 1000 '“‘1650.0 36
Vpg (V) Frequency, GHz

RF measurements & graphs courtesy of Matt Guidry
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What we are working on...
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8m,i (teh = 4nm) 4 mS/um
Re 10 Qepm
Ry 10 Qepm
R, 10 Qepum
R, 0 Qepm
Bme 3.57 mS/pm
Cox (tox =2nm, t.., = 1nm) 1.34 fF/um
Coos 0.80 fF/um
Cow 1.63 fF/um
Cés,Fringe (from NTT) 0.40 fF/pum
Cop,Fringe (from NTT) 0.10 fF/pum
f, 896 GHz

f 1045 GHz 37

max
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3. Template Assisted Selective Epitaxy (TASE) Introduction
* Heterogenous Integration & Heterojunction Turning
* Design Challenges & Fabrication Process

4. TASE Examples
* Homo-epitaxy

* Hetero-epitaxy

5. Conclusions

38
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What is TASE?

Standard approach:

Devices generally fabricated beginning
with planar epitaxial layers

New approach: |
Template Assisted Selective Epitaxy diSlectric

substrate substrate

e Orientation and thickness defined by
template

e Selective growth occurs laterally

e Confined in template of dielectric
material
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Defect free material

e Growth via MOCVD selectively initiates at the substrate and proceeds laterally

e Gives in-plane heterojunctions

e Can trap defects with box edges enabling monolithic integration

Material 2
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Why is it useful?

High I% Triple HJ Tunnel FET
G

Dielectric (Back Barrier)

Substrate

mm

(1) Lattice Matched  p — Ing53Gag 474s i—Ings3Gag 4748

(2) Lightly Strained p — Ing6Gag 744s i —Ing77Gag 2348

(1.91% tensile) (1.62% compressive)
(3) Heavily Strained p — GaAs i—Inds
(G) (3.81% tensile) (3.13% compressive)
0.6 . 06 10° 700———————
- - design (1) - - design (1) | oo —=—(1) ballistic
05 |- - -design (2)| %3 - --design (2) 10°} ot 6001+ () ballistic
< 04 W |} —design (3)| 0.4 —design (3)/] = 1o’ 2 At 500~ (3) ballistic
g b — ] § 77~ [~y ballistic | ||~ (1) scattering
] X1 % Ees < 10} /% |=—(2) ballistic -4-(2) scattering|
5 0.2} Ev e = Al ——(3) ballistic | 300/."°"(3) scattering|
& 0.1 [ Dy Ee Bao'p [ Lo |-a-(1) scattering
\ = " ,’,ﬁ B -4-(2) scattering
0 % T E 10742 *-(3) scattering] 100 -
-0.1 LT . 10 60mVidec | | e
5 10 15 20 25 "p 02 04 06 08 1 0 005 0.1 015 0.2 025 0.3 0 005 0.1 0.15 02 025 0.3
X [nm] Transmission as V) as
(a) (b) (a) (b)

e Simple post-growth process flow

e Lateral gating and VLSI compatible processing

e Channel thickness controlled by template "
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Why is it useful?

Regrown Extrinsic Base HBT

e W o

(1) Lattice Matched  p — Ings3GagssAs i —Ings3Gag 47As Collector

(s) (Ch) : ightl ined - i —
S) p-InP ‘ (2) Lightly Straine P — Ing26Gag 74As i —Ing77Gag 2348
( ) P | P‘G‘A’ i-InAs (1.91% tensile) (1.62% compressive)

Sub-Collector

(3) Heavily Strained p — GaAs i—Inds
(3.81% tensile) (3.13% compressive)

0.6 10 700————————+——
desi 1 T s —=—(1) ballisti
I d::.gzzzz —desan )| SR o oot f / 87R. ( :
s 04 Y} l|—design (3)| 0.4 —design @)1 = 10 o 5001~ (3) ballistic 1 ITHX —_— bb
L na b 1 — E ! 77" —a—(1) ballistic -=-(1) scattering
0 0.3 {1 3 it (1) 200 1
5 | X1 ENE ’ < 10 4 ~+(2) ballistic -4-(2) scattering ;
g 02r Ev R 0.2 = Al ~~(3) ballistic | 300.~°~(3) scattering| e
= o R “I‘\ ::“:,YEC o B0} ;:',’ e ---(1)scanerlng 200 ‘ . . . . . . . .
e o s T  Simultaneous optimization of intrinsic device
-0.1 -0.1 A 10 - - 60mVi/dec 0o el . . . . .
05 s @ = oz ar ge s 1 "o obs 07,075 02 025 03 & 5 01 015 02 035 0a materials and extrinsic device materials
@ (b) (@) (b)

e Enables reduction in R,, (optimize contacts)

e Simultaneous reduction in C_, (buried oxide)
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Why is it useful?

Heterogenous Integration: l11/V on Si (IBM Zurich)

Confined Epitaxial Lateral Overgrowth (CELO): Monolithic integration of multiple I11-V
A Novel Concept for Scalable Integration of CMOS-compatible . .
InGaAs-on-insulator MOSFETs on Large-Area Si Substrates semiconductors on S1 for MOSFETs and TFETSs
L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell , R. Emi and J. Fompeyrine

IBM Research GmbH Ziirich Laboratory, Sidumerstrasse 4, CH-8803 Riischlikon, Switzerland

(*) EMPA, Electron Microscopy Center, Uberlandstrasse 129, 8600 Diibendorf, Switzerland H. Schmid. D. Cutaia. J. Gooth. S. Wirths. N Bologna* K. E. Moselund and H. Riel
Published Online: June 1998 Accepted: September 1969 IBM Research - Zurich, Saumerstrasse 4, 8803 Riischlikon. Switzerland, email: sih@zurich.ibm.com
Novel technique for Si epitaxial lateral overgrowth: Tunnel epitaxy EMPA, Electron Microscopy Center, 8600 Dtibendorf, Switzerand
Appl. Phys. Lett. 55, 2205 (1989); https://doi.org/10.1063/1.102081
Atsushi Ogura and Yuki Fujimoto 4 !&lﬁ!"‘

—_ L .
IEEE ELECTRON DEVICE LETTERS, VOL. 11, NO. 5, MAY 1990 b 3 G.. ,,M
. N = AIF AlA
Confined Lateral Selective Epitaxial Growth of g Gap® | Al
Silicon for Device Fabrication v 2 AlSb
- GaAs InP. [
PETER J. SCHUBERT, STUDENT MEMBER, [EER, AND GEROLD W. NEUDECK, FeLLOW, (EEE o 1 5| = [ 1 -
N [ ] Ge o L g&svt! InSh
P R TR I
. . L ]
Selective area growth of III-V nanowires 0 3 35 2 G = 55
and their heterostructures on silicon in a Lattice constant (A)
nanotube template: towards monolithic amplifiers switches  el.-optical devices quantum dev.
integration of nano-devices :D‘ — @
J T ) E\r;u - d
{::tn)cu;'; g:;n‘::":“(;‘lf:‘s’::c‘s’;::‘f;:::;rMu;l{;‘f,l gcglll":: ll(; YBc:ssirc' and - D |_|
Heike Riel' ") BOX
BOX e siicon
InL+As K

e Can integrate multiple material systems on single wafer

e Demonstration of MOSFETs and gain material promising 43
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Bottom Oxide Seed Litho + Etch Sacrificial Layer
Deposition (EBL + ICP) Deposition + Litho + Etch
(PECVD) (Sputter + EBL + ICP)
/v

50-100 nm

InP substrate

.InP substrate

N e e

Sacrificial layer

Top oxide
(= ] 0
Top Oxide Sacrificial Layer
Deposition + Litho + Etch Removal
(PECVD + EBL + ICP) (XeF2)

source hole source hole
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Design Considerations (111-V)

45



AN ComSenTer

COMMUNICATIONS SENSING TERAHERTZ

Design Considerations (111-V)

1. Growth Selectivity ) PEQDSIOZ | ALDSIO2
* Not all oxides are created equal, chose wisely ¢

46
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Design Considerations (l1l-V)
A 9= Pg § Ls-oz ,

e~

2. Growth Window Definition
* Exposing surfaces to ion damage is bad for growth

CHF, + CF, +,0, Etch

Noetchstop Rk

47
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Design Considerations (111-V)

C ' ELECTRICAL AND COMPUTER ENGINEERING

——-

.~ PECVDSiO2 - ALDSIiO2

3. Sacrificial Layer MR s =
* Defines cavity geometry/edges o
e Must be easily/selectively removed (resist or Si)

48



AN ComSenTer

COMMUNICATIONS SENSING TERAHERTZ

Design Considerations (111-V)

- PECVD Si02 - ALD SiO2

Planview TEM

4. Characterization
* How to determine what is good and bad
* Simple electrical tests are not as simple due to parasitic growth

49
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Design Considerations (111-V)
Top Oxide: What happens to your cavity during growth (600°C)?

Temperature Cycle Effect on Cavity Morphology b) AFM Cross-Section of Process R Cavity Top oxide = PECVD SiO,
-2 200 - : : ~ i ™ Y E
- _._ T~ ——Process R: Pre-Growth [—B [—“B [“n L-]] L-J] LJ £~3 [-J] L-B
20 ’. ° AN 180 f ——Process R: Post-Growth| -
sl o - .'l P Cavities collapse during
100 e ¢ I warm up
E u
5 5F ) I + — - - - r .
E 0 * 0 \ I ¢ + [_—-n L-n L—D [_—-.Il LJ] L-ﬂ LB [:-3 U
2 0.2 04 0.6 I 08
= -5t | : :
Sl v No collapse, filled with InP
-15 ¢
+ P A: Post-Growth i — - ~ 2 s 1 i
0| 2 oo s Pt G Top oxide = HSQ (o0 €00 @D 62D [20 E3 ED L3 B3
* Process R: Post Growth
=25 : : .
Cavity Width (um) 0 0.5 1 1.5 Increasing W
Position (pzm)

Temperature cycles, oxide chemistry, and mechanical rigidity all come into play
Must pay very close attention to your (top) oxide = before, during, and after
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4. TASE Examples
* Homo-epitaxy
* Hetero-epitaxy

5. Conclusions
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Homo-epitaxy: InP / InP

* Easiest place to start 2 how do things grow inside boxes?
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Homo- epltaxy InP/ InP — Growth Dynamlcs

0.6 1.8

0.2 I
0 0

HA-25pum ®A-Spm
R-25pm ®=R-5pum

Template width (um)
0 0.2 0.4 0.6 0.8 1 1.2
1.2 4.8

};;?95}

¢ Length array
+ Width array

»
EN

~
S
Lateral growth rate (A/s)
1N
s
&

Grown length (um)
>
=

&
=N

*
RS
-
o
Grown length (um)

Lateral growth rate (A/s)

< .

2 22 24 2.6 2.8
Template length (um)

w

m 0.3
- 0

Facets determined by growth
conditions, not cavity

* Facets controlled by growth conditions (Temperature & V/Ill ratio = use low P)
* Increasing cavity thickness and width increases growth rate

* Decreasing cavity length and pitch (packing density) increases growth rate

* Control/uniformity/reproducibility are always challenging
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Top oxide

pt",'.i:"‘.'i, " 2T | i
Bottom oxide

Top oxide

InAs HJs

|

Bottom oxide |*
,W InP substrate

=

* Pseudomorphic GaAs and InAs quantum
wells

e Atomically abrupt interfaces

e Often issues with missing HJs, inconsistent
well width 55
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Top oxide s : F GROWTH ] Top oxide a) 3
t

) _Bgttom oxide : 2 %llm : : by Top oxide

Bottom ox1de Pt

Top oxide Top oxide

InAsHJs

Bottom oxide

InP substrate Bottom oxide

* Example of 3HJ-TFET design

e Strain compensated 3HJ (GaAs = tensile, InAs
compressive)
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Homo-epitaxy: InP / InP — Quantum Wells

Strained Single Quantum Wells

Material: InAs and GaAs
Device: LED or LASER
Application: Displays, commun.
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Homo-epitaxy: InP / InP — Quantum Wells

Strained Single Quantum Wells Super Lattice

Material: InAs and GaAs Material: InGaAs/InP superlattice
Device: LED or LASER Device: Superlattice FET
Application: Displays, commun. Application: Low Power Logic

oxide
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Homo-epitaxy: InP / InP — Quantum Wells

Strained Single Quantum Wells Super Lattice Triple Heterojunction
Material: InAs and GaAs Material: InGaAs/InP superlattice Material: InP/InAs/GaAs/InP
Device: LED or LASER Device: Superlattice FET Device: 3HJ TFET

Application: Displays, commun. Application: Low Power Logic Application: Low Power Logic
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Hetero -epitaxy: InP / SOI
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* Nucleation is harder = severe lattice mismatch

* Tricks that work for selective area growth with large fill factor (low
temperature nucleation) unlikely to work for TASE

SOI Cavity before growth

SOl Silicon
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HT InP
HT InP

LT InP
LT GaAs LT InP

Si seed Si seed

1\ mag B WD tilt | spot | dwell HFW 5um ma v tilt ‘spot dwell HFW
0Okv | 10000x 4.2mm [0° 4.5 |10ps | 20.7 pm 'KV | 5000x  4.6mm [0° | 4.0 | 10ps | 41.4 pm

seed hole /

\ source hole
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Hetero-epitaxy: InP / Si e [
\ source hole

* Single point nucleation appears easier - & - .

* Currently working to scale up to ASML
* Higher packing density
* Higher throughput
* Lower cost
* If needed, 1%t litho step (seed) can be done by EBL

e [

seed trench ‘ /

\ source hole
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Conclusions

MOS-HEMT:

3. T-Gates (alignment & filling) are TOUGH...

TASE:
1. Opens a new degree of freedom in device design

2. Heterogenous integration on Si (electronics) and SOI (photonlcs) |
3. Processing ( ) + Growth ( ) = VERY SENSITIVE
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Thank You
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Designh Considerations

1. Growth Selectivity = Inherently low fill factor, don’t want material
nucleating where its not supposed to

PECVD SiO2 ALD SiO2 Sputtered S|02

¥ A L ) { 7 S b o \ - '
— lpm UCSB 12/7/2016 — 1pm UCSB 12/7/2016 1pm UCSB 1/5/2017
10.0kV SEI SEM WD 7.4mm 12:07:31 X 10,000 10.0kV SEI SEM WD 7.1mm 12:40:29 ’ . SEM WD 7.0mm 18:38:57
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Designh Considerations

2. Growth Window Definition = Don’t want to damage mterface before
growth, can cause poor initiation

CHF; + CF4 + O, Etch

Oxide 4 ) Large Growth
, Wmdow :

A

HF + Gasonics Str|p

Height Sensor TOUm

350 |
300
250

200

nm 0.5 ' 18 2 25 3 35 4 45 o
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Designh Considerations

3. Post-processing = Need to be able to make devices!
* Parasitic growth makes lift-off difficult = ruins resist profile
 Growth on alighment mark edges makes alignment difficult

SEL E

o4 o
i
] jt *‘A@

d]i@ @3 jo

i

o @i
" o= g fia !
{do ¢ I
&‘ \j’l‘ 4
) d

InGaAs InGaAs

Material causing
parasitic

Parasitics on
alignment marks

Parasitic size ~2-4 ym diameter




