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1. If giving a “Tech-Talk”: send a picture or they will FIND one

2. Parents: don’t give kids <18 years old cameras/phones/computers, 
it can only bite them in the ass

@sparkybender



1. MOS-HEMT Introduction
• Beyond 5G Application

• Design Challenges

• Proposed InAs/InP MOS-HEMT Design

2. THz Transistor “Pieces”
• Fabrication Process

• High-k Quality

• Modulation Doped Access Regions

• 𝑓𝜏 = 480 𝐺𝐻𝑧 MOS-HEMT demonstration
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4. TASE Examples
• Homo-epitaxy

• Hetero-epitaxy
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Motivation – Beyond 5G
• Demand for information/connectivity increasing explosively

• Industry currently introducing 5G (28, 38, 57-71, 71-86 GHz)

• Beyond 5G requires 100-340 GHz communication systems

• Wireless for End-User and Backhaul will require higher data rates 8

Reprinted with permission of Mark Rodwell
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Increase 𝒈𝒎,𝒊 and decrease 𝑹𝑺



How to Increase 𝑔𝑚,𝑖? Look to Ballistic FET Theory
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• Electron travels S → D without scattering, can derive IV from E(k)
• High-k roughness/non-epitaxial interface, 𝐿𝑔 < 30𝑛𝑚

• Independent of 𝐿𝑔→ except short channel effects
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Only “knob” is 𝑪𝑮𝑺

How to Increase 𝑔𝑚,𝑖? Look to Ballistic FET Theory

• Electron travels S → D without scattering, can derive IV from E(k)
• High-k roughness/non-epitaxial interface, 𝐿𝑔 < 30𝑛𝑚
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Traditional FET Scaling Laws (Now Broken)
FET parameter change

gate length decrease 2:1

current density (mA/mm) increase  2:1

specific transconductance (mS/mm) increase 2:1

transport mass constant

2DEG  electron density increase  2:1

gate-channel capacitance density increase  2:1

dielectric equivalent thickness decrease 2:1

channel thickness decrease 2:1

channel state density increase  2:1

contact resistivities decrease 4:1
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FET parameter change

gate length decrease 2:1

current density (mA/mm) increase  2:1

specific transconductance (mS/mm) increase 2:1

transport mass constant

2DEG  electron density increase  2:1

gate-channel capacitance density increase  2:1

dielectric equivalent thickness decrease 2:1

channel thickness decrease 2:1

channel state density increase  2:1

contact resistivities decrease 4:1

What about HEMTs ?
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FET Scaling Laws (Now Broken)

Difficult to scale 𝑔𝑚 as 𝑡𝑜𝑥 and 𝐿𝑔 near minimum + other 𝐶𝐺𝑆 contributors

Highly scaled MOSFETs have large 𝐶𝑒𝑛𝑑 due to packing density 



Towards faster HEMTs
Scaling limit: Gate Insulator Thickness

• HEMT: InAlAs barrier: tunneling, thermionic leakage

• CBO ~ 0.5eV to InGaAs

• Solution: replace InAlAs with high-K dielectric

• CBO > 3.0eV to InGaAs

• Target: 2nm ZrO2 (er=25) vs. 5nm InAlAs (er=12) : adequately low leakage

• 70% improvement of 𝐶𝑔−𝑐ℎ

26Substrate

Channel

High-k

InAlAs

Channel

Substrate

n+ source n+ drain

n+ source n+ drain
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• Target: 2nm ZrO2 (er=25) vs. 5nm InAlAs (er=12) : adequately low leakage

• 70% improvement of 𝐶𝑔−𝑐ℎ

Scaling limit: Wide Eg beneath S/D

• HEMT: InAlAs barrier is under N+ source/drain

• ~100 Ω ∙ 𝜇𝑚 in 𝑅𝑆

• Solution: regrowth, place N+  layer on InAs channel

• No barrier between S/D and channel

• Target: Removes 100 Ω ∙ 𝜇𝑚 from 𝑔𝑚,𝑒 = 3 𝑚𝑆/𝜇𝑚

• ~30% improvement in 𝑔𝑚,𝑒 27Substrate

ChannelS/D Regrowth 
directly on channel

High-k

InAlAs

Channel

Substrate

n+ source n+ drain

Wide 𝑬𝒈 beneath 

heavily doped S/D

n+ source n+ drain



Summary
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Higher frequency systems
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Substrate

ChannelS/D Regrowth directly on 
channel
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1. MOS-HEMT Introduction
• Beyond 5G Application

• Design Challenges

• Proposed InAs/InP MOS-HEMT Design

2. THz Transistor “Pieces”
• Fabrication Process

• High-k Quality

• Modulation Doped Access Regions

• 𝑓𝜏 = 480 𝐺𝐻𝑧 MOS-HEMT demonstration

3. Template Assisted Selective Epitaxy (TASE) Introduction
• Heterogenous Integration & Heterojunction Turning

• Design Challenges & Fabrication Process

4. TASE Examples
• Homo-epitaxy

• Hetero-epitaxy

5. Conclusions
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Regrowth Reversal Process

Back Barrier (InAlAs)

Channel (InAs)

HSQ

Channel

Back Barrier

N+ N+ HSQ

Modulation doped 
wide 𝐸𝑔 region

Back Barrier

Channel

N+ N+

High-k

Recessed gate

Link

N+ N+

Gate

High-k

Link

N+ N+

Link

Channel

Gate

N+ N+

DS

InAs

InAlAs

Link Dummy Gate EBL
Regrow S/D

Dummy Gate EBL
Regrow Link

Mesa Isolation
Strip Dummy Gate

Digital Etch
High-k + FGA

Evaporate Gate Metal
Post Metal H2 Anneal

Remove High-k
Etch Link Region

Evaporate S/D
Evaporate Pads
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𝐿𝑔 + 100𝑛𝑚

𝐿𝑔~20𝑛𝑚



Major Components:

1. High quality gate oxide (ZrO2)
a) Varistha Chopattana. PhD Dissertation, UCSB, 2016.

b) Sanghoon Lee. PhD Dissertation, UCSB, 2014.

c) Cheng-Ying Huang. PhD Dissertation, UCSB, 2015.

d) Hsin-Ying Tseng et al. DRC, paper 2019.

2. Modulation doped access region
a) H.B. Jo et al. Appl. Phys. Express vol. 12, 2019.

b) Simoné Growth / Klamkin Group InP MOCVD

3. RF Process All Together
a) J. Wu et al. IEEE EDL vol. 39, No. 4, 2018.

Need Pieces First
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Channel Material Minimum SS

InAs [1a,1b] 61 mV/dec

InGaAs [1c] 63 mV/dec

InP / InGaAs [1c] 67 mV/dec

InP [1d] 71 mV/dec

9 cycles TMA + N* \ 100W – 300C
~35 cycles TEMAZ + H2O – 300C



RF MOSFET DC Results – Ch3-L1G2SD3RF MOSFET

InP
Channel

InP
Channel

Modulation doped InP

HSQ

InP

HSQN+ N+

InP

N+ N+

High-k

InP

N+ N+

Link Channel

G G

S D

InP

N+ N+

Link

Modulation 
doped InP
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RF MOSFET DC Results – Ch3-L1G2SD3RF MOSFET

InP
Channel

InP
Channel

Modulation doped InP

HSQ

InP

HSQN+ N+

InP

N+ N+

High-k

InP

N+ N+

Link Channel

G G

S D

InP

N+ N+

Link

Modulation 
doped InP

34

• Pinch off and SS mostly convoluted with S/D leakage → parallel conduction in etch stop

• Excellent gate leakage (Ig < 10 pA/µm for T-Gate devices, Lfoot < 200nm)

• Ion ~ 1 mA/µm and peak gm,e = 2.3 mS/µm → EXCELLENT given thick channel & high-k

Poor off current

Excellent gate 
leakage

High gm



Lg = 22nm, Wg = 20µm RF Results – Ch3-L1G2SD3RF MOSFET
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Ch3-L1G2SD3

Lg 22 nm

Wg 40 µm

gm,e(DC) 2.33 mS/µm

gm,e(1 GHz) 2.65 mS/µm

ft 480 GHz

fmax 170 GHz

RF measurements & graphs courtesy of Matt Guidry

Poor fmax due to gate resistance → T-Gate Necking



Ch3-L1G2SD3 – Device ComparisonRF MOSFET
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22nm 60nm

Lfoot 74 nm 100nm

Wg 40 µm 40 µm

ft 482 GHz 397 GHz

fmax 202 GHz 450 GHz

RF measurements & graphs courtesy of Matt Guidry

• Do not pay attention to actual numbers → poor 
calibration ISS and bad probes 

• Gate resistance is limiting factor on this run



What we are working on…
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Parameter Quantity

gm,i (tch = 4nm) 4 mS/µm

RC 10 Ω•µm

RN 10 Ω•µm

RL 10 Ω•µm

RA 0 Ω•µm

gm,e 3.57 mS/µm

COX (tOX = 2nm, tint = 1nm) 1.34 fF/µm

CDOS 0.80 fF/µm

CQW 1.63 fF/µm

CGS,Fringe (from NTT) 0.40 fF/µm

CGD,Fringe (from NTT) 0.10 fF/µm

ft 896 GHz

fmax 1045 GHz

T-Gate

High-k

Link

N+ N+

Link Channel
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What is TASE?

Standard approach:

Devices generally fabricated beginning 
with planar epitaxial layers

Back Barrier

Channel

Source Drain
Gate

substrate

dielectric

substrate

dielectric

New approach: 
Template Assisted Selective Epitaxy

• Orientation and thickness defined by 
template

• Selective growth occurs laterally

• Confined in template of dielectric 
material
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What is TASE?

SiO2 SiO2

Substrate

Precursor Gas

SiO2 SiO2

Substrate

Material 1Material 2Material 3

• Growth via MOCVD selectively initiates at the substrate and proceeds laterally

• Gives in-plane heterojunctions

• Can trap defects with box edges enabling monolithic integration

Defect free material
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Why is it useful?
High Ion Triple HJ Tunnel FET

S

Substrate

Dielectric (Back Barrier)

Ch D

G

• Simple post-growth process flow

• Lateral gating and VLSI compatible processing

• Channel thickness controlled by template
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Why is it useful?
High Ion Triple HJ Tunnel FET

S

Substrate

Dielectric (Back Barrier)

Ch D

G

Regrown Extrinsic Base HBT

• Simple post-growth process flow

• Lateral gating and VLSI compatible processing

• Channel thickness controlled by template

• Simultaneous optimization of intrinsic device 
materials and extrinsic device materials 

• Enables reduction in Rbb (optimize contacts)

• Simultaneous reduction in Ccb (buried oxide)

cbibbCRff t 8max 
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Why is it useful?
Heterogenous Integration: III/V on Si (IBM Zurich)

• Can integrate multiple material systems on single wafer

• Demonstration of MOSFETs and gain material promising
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Fabrication Process

Bottom Oxide 

Deposition

(PECVD)

Seed Litho + Etch

(EBL + ICP)

Sacrificial Layer 

Deposition + Litho + Etch 

(Sputter + EBL + ICP)

Top Oxide 

Deposition + Litho + Etch 

(PECVD + EBL + ICP)

Sacrificial Layer 

Removal

(XeF2)

Sacrificial layer

Bottom oxide

Top oxide

InP substrate

100 nm

50-100 nm

50 nm

20 nm

III/V

InP substrate

Top oxide

Bottom oxide



Design Considerations (III-V)
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Design Considerations (III-V)
1. Growth Selectivity

• Not all oxides are created equal, chose wisely
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Design Considerations (III-V)
1. Growth Selectivity

• Not all oxides are created equal, chose wisely

2. Growth Window Definition
• Exposing surfaces to ion damage is bad for growth

• May need very small opening → dry etch → etch stop, careful while stripping

47

ALD SiO2PECVD SiO2

CHF3 + CF4 + O2 Etch

No etch stop

PEII strip of resist
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Design Considerations (III-V)
1. Growth Selectivity

• Not all oxides are created equal, chose wisely

2. Growth Window Definition
• Exposing surfaces to ion damage is bad for growth

• May need very small opening → dry etch → etch stop, careful while stripping

3. Sacrificial Layer
• Defines cavity geometry/edges

• Must be easily/selectively removed (resist or Si)

4. Characterization
• How to determine what is good and bad

• Simple electrical tests are not as simple due to parasitic growth
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ALD SiO2PECVD SiO2

Planview TEM



Design Considerations (III-V)
1. Growth Selectivity

• Not all oxides are created equal, chose wisely

2. Growth Window Definition
• Exposing surfaces to ion damage is bad for growth

• May need very small opening → dry etch → etch stop, careful while stripping

3. Sacrificial Layer
• Defines cavity geometry/edges

• Must be easily/selectively removed (resist or Si)

4. Characterization
• How to determine what is good and bad

• Simple electrical tests are not as simple due to parasitic growth

5. Top oxide → defines selectivity & cavity when empty → can we process?
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Design Considerations (III-V)
Top Oxide: What happens to your cavity during growth (600°C)?

Temperature cycles, oxide chemistry, and mechanical rigidity all come into play

Must pay very close attention to your (top) oxide → before, during, and after
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Planview TEM

Cavities collapse during 
warm up

No collapse, filled with InP

Increasing WCavity Width (𝝁𝒎)

Top oxide = HSQ

Top oxide = PECVD SiOx



1. MOS-HEMT Introduction
• Beyond 5G Application

• Design Challenges

• Proposed InAs/InP MOS-HEMT Design

2. THz Transistor “Pieces”
• Fabrication Process

• High-k Quality

• Modulation Doped Access Regions

• 𝑓𝜏 = 480 𝐺𝐻𝑧 MOS-HEMT demonstration

3. Template Assisted Selective Epitaxy (TASE) Introduction
• Heterogenous Integration & Heterojunction Turning

• Design Challenges & Fabrication Process

4. TASE Examples
• Homo-epitaxy

• Hetero-epitaxy

5. Conclusions
52



• Easiest place to start → how do things grow inside boxes?
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Homo-epitaxy: InP / InP
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Homo-epitaxy: InP / InP – Growth Dynamics

• Facets controlled by growth conditions (Temperature & V/III ratio → use low P)

• Increasing cavity thickness and width increases growth rate

• Decreasing cavity length and pitch (packing density) increases growth rate

• Control/uniformity/reproducibility are always challenging

Facets determined by growth 
conditions, not cavity

Oxide

TASE InP

Parasitic



55

Homo-epitaxy: InP / InP – Quantum Wells

Oxide

• Pseudomorphic GaAs and InAs quantum 
wells

• Atomically abrupt interfaces

• Often issues with missing HJs, inconsistent 
well width



56

Homo-epitaxy: InP / InP – Quantum Wells

Oxide

• Pseudomorphic GaAs and InAs quantum 
wells

• Atomically abrupt interfaces

• Often issues with missing HJs, inconsistent 
well width

• Example of 3HJ-TFET design

• Strain compensated 3HJ (GaAs = tensile, InAs 
compressive)



InP InP

GaAs

DIRECTION OF GROWTH

InP
oxide

oxide

InAs

GaAs

5 nm
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Homo-epitaxy: InP / InP – Quantum Wells

Oxide

Strained Single Quantum Wells

Material: InAs and GaAs
Device: LED or LASER
Application: Displays, commun.
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Homo-epitaxy: InP / InP – Quantum Wells

Oxide

Super Lattice

Material: InGaAs/InP superlattice
Device: Superlattice FET
Application: Low Power Logic

Strained Single Quantum Wells

Material: InAs and GaAs
Device: LED or LASER
Application: Displays, commun.
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Homo-epitaxy: InP / InP – Quantum Wells

Oxide

Super Lattice

Material: InGaAs/InP superlattice
Device: Superlattice FET
Application: Low Power Logic

Strained Single Quantum Wells

Material: InAs and GaAs
Device: LED or LASER
Application: Displays, commun.

Triple Heterojunction

Material: InP/InAs/GaAs/InP
Device: 3HJ TFET
Application: Low Power Logic



• Nucleation is harder → severe lattice mismatch

• Tricks that work for selective area growth with large fill factor (low 
temperature nucleation) unlikely to work for TASE
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Hetero-epitaxy: InP / SOI

SOI Silicon

Empty oxide 

template

SOI Cavity before growth
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Hetero-epitaxy: InP / SOI & Si

HT InP

LT InP

Si seed

TBA 
flow

+anneal 

HT InP

LT InP

Si seed
+anneal 

LT GaAs
TBA 
flow

source hole
seed hole

10 µm



• Single point nucleation appears easier

• Currently working to scale up to ASML
• Higher packing density

• Higher throughput

• Lower cost

• If needed, 1st litho step (seed) can be done by EBL
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Hetero-epitaxy: InP / Si

source hole
seed trench

source hole
seed hole



MOS-HEMT:

1. Demonstration of process, minor tweaks for big wins

2. Bottom up process gives some process freedom compared to top down

3. T-Gates (alignment & filling) are TOUGH…

TASE:

1. Opens a new degree of freedom in device design

2. Heterogenous integration on Si (electronics) and SOI (photonics)

3. Processing (very sensitive) + Growth (very sensitive) = VERY SENSITIVE
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Conclusions

S/D ohmic

Gate Metal

Self-aligned S/D metal

seed
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5nm channel under gate

2-3nm channel in link

DG1 Extent

DG2 Extent

S/D Regrowth

Thank You

Questions?
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Design Considerations
1. Growth Selectivity → Inherently low fill factor, don’t want material 

nucleating where its not supposed to
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ALD SiO2PECVD SiO2 Sputtered SiO2



Oxide Large Growth 

Window

Design Considerations
2. Growth Window Definition → Don’t want to damage interface before 

growth, can cause poor initiation

Island growth due 

to plasma damage

HF + Gasonics Strip

HF + PEII Strip

CHF3 + CF4 + O2 Etch



Design Considerations
3. Post-processing → Need to be able to make devices! 

• Parasitic growth makes lift-off difficult → ruins resist profile

• Growth on alignment mark edges makes alignment difficult

Parasitic size ~2-4 µm diameter

DRY 
ETCH

InP InGaAs

oxide

oxide

InP InGaAs

oxide

oxide

InP InGaAs

oxide

oxide

Material causing 

parasitic

SELECTIVE 
WET ETCH

Parasitics on 

alignment marks


