Wet Etching Recipes: Difference between revisions
(→Table of Wet Etching Recipes: Added InP & InGaAs selective etches for stop-etch) |
(→Compound Semiconductor Etching: updated Claswson link to state author and date, added description of the paper) |
||
(13 intermediate revisions by 2 users not shown) | |||
Line 11: | Line 11: | ||
!Material!!Etchant!!Rate (nm/min)!!Anisotropy!!Selective to!!Selectivity!!Ref.!!Notes!!Confirmed By/Date |
!Material!!Etchant!!Rate (nm/min)!!Anisotropy!!Selective to!!Selectivity!!Ref.!!Notes!!Confirmed By/Date |
||
|- |
|- |
||
|Photoresist, polymers/organics |
|||
|InP||H3PO4:HCl = 3:1||~1000||Highly||InGaAs||High||[http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)]|| |
|||
|H2SO4:H2O2 = 3:1 |
|||
[[Wet Etching Recipes#Organic%20removal|Piranha Solution]] |
|||
|typ. 5-10min etch for polymer residue |
|||
| |
|||
|Cr, W, Au, Pt, Si, SiO2, SiN |
|||
| |
|||
| |
| |
||
|'''''Dangerous''''' boiling hazard - see '''''[[Wet Etching Recipes#Piranha%20Solution|Piranha Solution]]''''' |
|||
section below. Etches Ti |
|||
|[[Demis D. John]], 2017 |
|||
|- |
|- |
||
|InP |
|InP |
||
Line 32: | Line 41: | ||
| |
| |
||
| |
| |
||
| |
|||
|- |
|||
|InP||H3PO4:HCl = 3:1||~1000||Highly||InGaAs||High||[http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)]|| |
|||
| |
| |
||
|- |
|- |
||
Line 52: | Line 64: | ||
|High |
|High |
||
| |
| |
||
|Exothermic, |
|Exothermic, may reduce selectivity if hot |
||
| |
| |
||
|- |
|- |
||
Line 148: | Line 160: | ||
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=PECVD_Recipes#SiO2_deposition_.28PECVD_.231.29 SiO2 ''(PECVD #1)''] |
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=PECVD_Recipes#SiO2_deposition_.28PECVD_.231.29 SiO2 ''(PECVD #1)''] |
||
|HF ("Buffered HF Improved", Transene) |
|HF ("Buffered HF Improved", Transene) |
||
|~ |
|~550 |
||
|None |
|None |
||
|Photoresist |
|Photoresist |
||
Line 155: | Line 167: | ||
|May need to increase adhesion with 100°C baked HMDS. |
|May need to increase adhesion with 100°C baked HMDS. |
||
|Biljana Stamenic |
|Biljana Stamenic |
||
2023 |
|||
2017 |
|||
|- |
|- |
||
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=PECVD_Recipes#SiO2_deposition_.28PECVD_.232.29 SiO2 ''(PECVD #2)''] |
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=PECVD_Recipes#SiO2_deposition_.28PECVD_.232.29 SiO2 ''(PECVD #2)''] |
||
|HF ("Buffered HF Improved", Transene) |
|HF ("Buffered HF Improved", Transene) |
||
|~ |
|~680 |
||
|None |
|None |
||
|Photoresist |
|Photoresist |
||
Line 166: | Line 178: | ||
|May need to increase adhesion with 100°C baked HMDS. |
|May need to increase adhesion with 100°C baked HMDS. |
||
|Biljana Stamenic |
|Biljana Stamenic |
||
2023 |
|||
2017 |
|||
|- |
|- |
||
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=Sputtering_Recipes#SiO2_deposition_.28IBD.29 SiO2 (IBD)] |
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=Sputtering_Recipes#SiO2_deposition_.28IBD.29 SiO2 (IBD)] |
||
|HF ("Buffered HF Improved", Transene) |
|HF ("Buffered HF Improved", Transene) |
||
|~ |
|~260 |
||
|None |
|||
|Photoresist |
|||
|High |
|||
|Measured in-house |
|||
| |
|||
|Biljana Stamenic |
|||
2023 |
|||
|- |
|||
|[https://wiki.nanofab.ucsb.edu/wiki/PECVD_Recipes#ICP-PECVD_.28Unaxis_VLR.29 SiO2 LDR ''(Unaxis VLR)''] |
|||
|HF ("Buffered HF Improved", Transene) |
|||
|~170 |
|||
|None |
|||
|Photoresist |
|||
|High |
|||
|Measured in-house |
|||
| |
|||
|Biljana Stamenic |
|||
2023 |
|||
|- |
|||
|[https://wiki.nanofab.ucsb.edu/wiki/PECVD_Recipes#ICP-PECVD_.28Unaxis_VLR.29 SiO2 HDR ''(Unaxis VLR)''] |
|||
|HF ("Buffered HF Improved", Transene) |
|||
|~230 |
|||
|None |
|None |
||
|Photoresist |
|Photoresist |
||
Line 177: | Line 211: | ||
| |
| |
||
|Biljana Stamenic |
|Biljana Stamenic |
||
2023 |
|||
2016 |
|||
|- |
|- |
||
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=PECVD_Recipes#SiN_deposition_.28PECVD_.231.29 Si3N4 (PECVD#1)] |
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=PECVD_Recipes#SiN_deposition_.28PECVD_.231.29 Si3N4 (PECVD#1)] |
||
|HF ("Buffered HF Improved", Transene) |
|HF ("Buffered HF Improved", Transene) |
||
|~120 |
|||
|85 |
|||
|None |
|None |
||
|Photoresist |
|Photoresist |
||
Line 188: | Line 222: | ||
| |
| |
||
|Biljana Stamenic |
|Biljana Stamenic |
||
2023 |
|||
2018-04 |
|||
|- |
|- |
||
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=PECVD_Recipes#SiN_deposition_.28PECVD_.232.29 Si3N4 (PECVD#2)] |
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=PECVD_Recipes#SiN_deposition_.28PECVD_.232.29 Si3N4 (PECVD#2)] |
||
|HF ("Buffered HF Improved", Transene) |
|HF ("Buffered HF Improved", Transene) |
||
|~35 |
|||
|35–45 |
|||
|None |
|None |
||
|Photoresist |
|Photoresist |
||
Line 199: | Line 233: | ||
| |
| |
||
|Biljana Stamenic |
|Biljana Stamenic |
||
2023 |
|||
2018-05 |
|||
|- |
|- |
||
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=PECVD_Recipes#Low-Stress_SiN_deposition_.28PECVD_.232.29 Si3N4 Low-Stress (PECVD#2)] |
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=PECVD_Recipes#Low-Stress_SiN_deposition_.28PECVD_.232.29 Si3N4 Low-Stress (PECVD#2)] |
||
|HF ("Buffered HF Improved", Transene) |
|HF ("Buffered HF Improved", Transene) |
||
|~30 |
|||
|35–50 |
|||
|None |
|None |
||
|Photoresist |
|Photoresist |
||
Line 210: | Line 244: | ||
| |
| |
||
|Biljana Stamenic |
|Biljana Stamenic |
||
2023 |
|||
2018-05 |
|||
|- |
|- |
||
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=Sputtering_Recipes#Si3N4_deposition_.28IBD.29 Si3N4 (IBD)] |
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=Sputtering_Recipes#Si3N4_deposition_.28IBD.29 Si3N4 (IBD)] |
||
|HF ("Buffered HF Improved", Transene) |
|HF ("Buffered HF Improved", Transene) |
||
|~5 |
|||
|5–15 |
|||
|None |
|None |
||
|Photoresist |
|Photoresist |
||
Line 221: | Line 255: | ||
| |
| |
||
|Biljana Stamenic |
|Biljana Stamenic |
||
2023 |
|||
2014 |
|||
|- |
|||
|[https://wiki.nanofab.ucsb.edu/wiki/PECVD_Recipes#ICP-PECVD_.28Unaxis_VLR.29 SiN ''(Unaxis VLR)''] |
|||
|HF ("Buffered HF Improved", Transene) |
|||
|~10 |
|||
|None |
|||
|Photoresist |
|||
|High |
|||
|Measured in-house |
|||
| |
|||
|Biljana Stamenic |
|||
2023 |
|||
|- |
|||
|[https://wiki.nanofab.ucsb.edu/wiki/PECVD_Recipes#ICP-PECVD_.28Unaxis_VLR.29 SiN Low Stress ''(Unaxis VLR)''] |
|||
|HF ("Buffered HF Improved", Transene) |
|||
|~135 |
|||
|None |
|||
|Photoresist |
|||
|High |
|||
|Measured in-house |
|||
| |
|||
|Biljana Stamenic |
|||
2023 |
|||
|- |
|- |
||
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=Sputtering_Recipes#Ta2O5_deposition_.28IBD.29 Ta2O5 (IBD)] |
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=Sputtering_Recipes#Ta2O5_deposition_.28IBD.29 Ta2O5 (IBD)] |
||
|HF ("Buffered HF Improved", Transene) |
|HF ("Buffered HF Improved", Transene) |
||
|0. |
|0.07 |
||
|None |
|None |
||
|Photoresist |
|Photoresist |
||
Line 232: | Line 288: | ||
| |
| |
||
|Biljana Stamenic |
|Biljana Stamenic |
||
2023 |
|||
2016-12 |
|||
|- |
|- |
||
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=Sputtering_Recipes#TiO2_deposition_.28IBD.29 TiO2 (IBD)] |
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=Sputtering_Recipes#TiO2_deposition_.28IBD.29 TiO2 (IBD)] |
||
Line 260: | Line 316: | ||
|- |
|- |
||
!Material!!Etchant!!Rate (nm/min)!!Anisotropy!!Selective to!!Selectivity!!Ref.!!Notes!!Confirmed By/Date |
!Material!!Etchant!!Rate (nm/min)!!Anisotropy!!Selective to!!Selectivity!!Ref.!!Notes!!Confirmed By/Date |
||
|} |
|||
===Adding a new entry to the Table=== |
|||
When entering a new etch into the table: |
|||
*Make a row for every etchant used in the solution such that the information can be sorted by etchant. For example, the InP etch HCl:H3PO4(1:3) and H3PO4:HCl(3:1). |
|||
*Likewise, if etch is known to be selective to multiple materials the etch should have a row for each material. For example HCl:H3PO4(1:3) is selective to both InGaAs and InGaAsP. |
|||
This multiple entry method may seem laborious for the person entering a new etch, however the power of sorting by selective materials and chemicals in a table with all materials is great. |
|||
{| class="wikitable sortable" |
|||
|- |
|||
!Material!!Etchant!!Rate (nm/min)!!Anisotropy!!Selective to!!Selectivity!!Ref.!!Notes!!Confirmed by!!Extra column |
|||
|- |
|||
|InP||H3PO4:HCl(3:1)||~1000||Highly||InGaAs||High||[http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)]||Example||Jon Doe||Example |
|||
|- |
|||
|InP||H3PO4:HCl(3:1)||~1000||Highly||InGaAsP||High||[http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)]||Example||Jon Doe||Example |
|||
|} |
|} |
||
Line 288: | Line 327: | ||
===Compound Semiconductor Etching=== |
===Compound Semiconductor Etching=== |
||
[http://www.sciencedirect.com/science/article/pii/S0927796X00000279 Guide to references on III±V semiconductor chemical etching |
[http://www.sciencedirect.com/science/article/pii/S0927796X00000279 Guide to references on III±V semiconductor chemical etching (A.R. Clawson, 2001)] |
||
* Impressively vast list of various III-V wet etches, organized by various applications (eg. "selective GaAs against AlGaAs" or "non-selective InP/InGaAsP" etc.) |
|||
Please add any confirmed etches from this reference to the {{HLink|Wet Etching Recipes|The Master Table of Wet Etching (Include All Materials)}}. |
|||
* Please add any confirmed etches from this reference to the {{HLink|Wet Etching Recipes|The Master Table of Wet Etching (Include All Materials)}}. |
|||
===Metal Etching=== |
===Metal Etching=== |
||
Line 306: | Line 346: | ||
==Organic removal== |
==Organic removal== |
||
===Piranha Solution=== |
|||
*Piranha Solution. '''Careful!''' Read about how to prepare and handle this safely: |
|||
*'''Careful!''' Read about how to prepare and handle this safely: |
|||
**[http://web.mit.edu/cortiz/www/PiranhaSafety.doc MIT's Piranha Solution safety document] |
**[http://web.mit.edu/cortiz/www/PiranhaSafety.doc MIT's Piranha Solution safety document] |
||
**[https://www.ehs.harvard.edu/sites/default/files/lab_safety_guideline_piranha_etch.pdf Harvard EHS's Handling Document] |
**[https://www.ehs.harvard.edu/sites/default/files/lab_safety_guideline_piranha_etch.pdf Harvard EHS's Handling Document] |
||
** |
**Used for etching away Photoresist residues after dry etching. |
||
*PureStrip @ 70°C (Transene) |
|||
===PureStrip (Transene)=== |
|||
*Heat to @ 70°C |
|||
**[[Wet Benches#Wafer Toxic Corrosive Benches|Vertical heated bath on Wafer Toxic-Corrosive bench in Bay 4]] |
**[[Wet Benches#Wafer Toxic Corrosive Benches|Vertical heated bath on Wafer Toxic-Corrosive bench in Bay 4]] |
||
**After a few days heated, it loses potency - must drain + replenish with fresh solution. |
**After a few days heated, it loses potency - must drain + replenish with fresh solution. |
||
**~30-90min will remove stubborn, microscopic PR residues from dry etching. |
**~30-90min will remove stubborn, microscopic PR residues from dry etching. |
||
==Gold Plating== |
==[[Gold Plating Bench|Gold Plating Bench (Technic SEMCON 1000)]]== |
||
Standard plating recipes are described and taught during the equipment training for this tool. |
|||
''To Be Added'' |
|||
Electroplating first requires a Gold seed layer to be present on all surfaces to be plated. Common ways to produce this are to: |
|||
*[[Tool List#Sputter Deposition|Sputter-coat]] a thin (~10nm) Au layer on all surfaces of the wafer, being careful to consider shadowing effects during the dep (eg. in high-aspect ratio trenches). |
|||
*Perform photolithography to protect (and prevent plating) in desired areas - areas with no photoresist will be plated. |
|||
*Perform the electroplating on the [[Gold Plating Bench|Technic SemCon]], contacting the seed layer with electrodes and executing the program for the desired current/time to achieve the plating thickness (typically microns). |
|||
*Strip the photoresist using standard solvents. |
|||
*Use the [[CAIBE (Oxford Ion Mill)|Oxford Ion Mill]] to blanket etch the 10nm seed layer all over the wafer (the 10nm removed from the plated regions will be negligible). |
|||
==[[Chemical-Mechanical Polisher (Logitech)|Chemi-Mechanical Polishing (CMP)]]== |
==[[Chemical-Mechanical Polisher (Logitech)|Chemi-Mechanical Polishing (CMP)]]== |
Revision as of 18:05, 24 September 2024
Chemicals Available
- The Chemical Lists show stocked chemicals, photolithography chemicals, and how to bring new chemicals.
Table of Wet Etching Recipes
Use the ↑ ↓ Arrows in the header row to sort the entire table by material, selectivity, etchant etc.
Material | Etchant | Rate (nm/min) | Anisotropy | Selective to | Selectivity | Ref. | Notes | Confirmed By/Date |
---|---|---|---|---|---|---|---|---|
Photoresist, polymers/organics | H2SO4:H2O2 = 3:1 | typ. 5-10min etch for polymer residue | Cr, W, Au, Pt, Si, SiO2, SiN | Dangerous boiling hazard - see Piranha Solution
section below. Etches Ti |
Demis D. John, 2017 | |||
InP | H3PO4:HCl = 3:1 | ~1000 | Highly | InGaAsP | High | Lamponi (p.102) | ||
InGaAsP | To Be Added | InP | High | |||||
InP | H3PO4:HCl = 3:1 | ~1000 | Highly | InGaAs | High | Lamponi (p.102) | ||
InP | HCl:H2O = 3:1 | ~5000 | InGaAs
~200nm stop-etch |
High | Bubbles while etching | |||
InGaAs | H2SO4:H2O2:H2O = 1:1:10 | ~600 | InP | High | Exothermic, may reduce selectivity if hot | |||
GaAs | NH4OH:H2O2 = 1:30 | - | AlGaAs,
Al > 80% ~200nm stop-etch |
High | Garrett Cole | |||
AlGaAs,
Al ≥80% |
HF:H2O = 1:20 | - | GaAs | High | Garrett Cole | |||
Oxide of InP | NH4OH:H2O = 1:10 | 1min to remove | InP | unknown | Ning Cao | |||
Oxide of GaAs | HCl:H2O = 1:10 | 1min to remove | GaAs | unknown | Demis D. John | |||
Al2O3 (ALD Plasma 300C) | Developer: 300MIF | ~1.6 | None | Most non-Al Materials. | High | Measured in-house | Rate slows with time. | JTB |
Al2O3 (ALD Plasma 300C) | Developer: 400K | ~2.2 | None | Most non-Al Materials. | High | Measured in-house | Rate slows with time. | JTB |
Al2O3 (ALD Plasma 300C) | Developer: 400K (1:4) | ~1.6 | None | Most non-Al Materials. | High | Measured in-house | Rate slows with time. | JTB |
Al2O3 (ALD Plasma 300C) | NH4OH:H2O2:H2O (1:2:50) | ~<0.5 | Measured in-house | Rate slows with time | JTB | |||
Al2O3 (IBD) | HF ("Buffered HF Improved", Transene) | ~170 | None | Photoresist | High | Measured in-house | May need to increase adhesion with thin SiO2 layer, and 100°C baked HMDS. | Biljana Stamenic,
2017-12 |
Al2O3 (IBD) | Developer: 726 MiF | 3.5 | None | Most non-Al Materials. | High | Measured in-house | Demis D. John,
2017-11 | |
Al2O3 (AJA#4) | Developer: 300 MiF | 4.30 | None | Most non-Al Materials. | High | Measured in-house | Demis D. John
2018-02 | |
SiO2 (PECVD #1) | HF ("Buffered HF Improved", Transene) | ~550 | None | Photoresist | High | Measured in-house | May need to increase adhesion with 100°C baked HMDS. | Biljana Stamenic
2023 |
SiO2 (PECVD #2) | HF ("Buffered HF Improved", Transene) | ~680 | None | Photoresist | High | Measured in-house | May need to increase adhesion with 100°C baked HMDS. | Biljana Stamenic
2023 |
SiO2 (IBD) | HF ("Buffered HF Improved", Transene) | ~260 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2023 | |
SiO2 LDR (Unaxis VLR) | HF ("Buffered HF Improved", Transene) | ~170 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2023 | |
SiO2 HDR (Unaxis VLR) | HF ("Buffered HF Improved", Transene) | ~230 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2023 | |
Si3N4 (PECVD#1) | HF ("Buffered HF Improved", Transene) | ~120 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2023 | |
Si3N4 (PECVD#2) | HF ("Buffered HF Improved", Transene) | ~35 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2023 | |
Si3N4 Low-Stress (PECVD#2) | HF ("Buffered HF Improved", Transene) | ~30 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2023 | |
Si3N4 (IBD) | HF ("Buffered HF Improved", Transene) | ~5 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2023 | |
SiN (Unaxis VLR) | HF ("Buffered HF Improved", Transene) | ~10 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2023 | |
SiN Low Stress (Unaxis VLR) | HF ("Buffered HF Improved", Transene) | ~135 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2023 | |
Ta2O5 (IBD) | HF ("Buffered HF Improved", Transene) | 0.07 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2023 | |
TiO2 (IBD) | HF ("Buffered HF Improved", Transene) | 1.0–2.0 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2014-12 | |
Si (<100> crystalline) | KOH (45%) @ 87°C | ~730 | High, Crystallographic, ~55° | Low-Stress Si3N4 - either PECVD #2 or Commercial LPCVD Si3N4
Other Si3N4 also OK. |
LS-SiN: High
PR etches quickly, SiO2 etches slowly. |
Measured In-House
- Search online. |
Use the Covered, Heated vertical bath (Dedi cated bath in Bay 4). Slight Bubbler. | Brian Thibeault
2017 |
Material | Etchant | Rate (nm/min) | Anisotropy | Selective to | Selectivity | Ref. | Notes | Confirmed By/Date |
Wet Etching References
- Etch rates for Micromachining Processing (IEEE Jnl. MEMS, 1996) - includes tables of etch rates of numerous metals vs. various wet and dry etchants.
- Etch rates for micromachining-Part II (IEEE Jnl. MEMS, 2003) - expanded tables containing resists, dielectrics, metals and semiconductors vs. many wet etch chemicals.
- Guide to references on III±V semiconductor chemical etching - exhaustive list of wet etchants for etching various semiconductors, including selective etches.
- Transene's Chemical Compatibility Chart provides a useful quick-reference for which Transene etchants attack which materials.
- As a side-note, Transene provides many pre-mixed solutions that you can order, saving you the time and uncertainty of measuring/mixing such chemicals yourself. Make sure you check with us before ordering so we know how to handle the chemical before it arrives.
Compound Semiconductor Etching
Guide to references on III±V semiconductor chemical etching (A.R. Clawson, 2001)
- Impressively vast list of various III-V wet etches, organized by various applications (eg. "selective GaAs against AlGaAs" or "non-selective InP/InGaAsP" etc.)
- Please add any confirmed etches from this reference to the The Master Table of Wet Etching (Include All Materials).
Metal Etching
- Selective Wet Etch of Cr over Ta using Cr Etchant
- Wet Etch of ITO using Heated, Diluted HCl Solution
Silicon etching
Etch rates for micromachining processing
Etch rates for micromachining processing-part II
Please add any confirmed etches from this reference to the The Master Table of Wet Etching (Include All Materials).
Organic removal
Piranha Solution
- Careful! Read about how to prepare and handle this safely:
- MIT's Piranha Solution safety document
- Harvard EHS's Handling Document
- Used for etching away Photoresist residues after dry etching.
PureStrip (Transene)
- Heat to @ 70°C
- Vertical heated bath on Wafer Toxic-Corrosive bench in Bay 4
- After a few days heated, it loses potency - must drain + replenish with fresh solution.
- ~30-90min will remove stubborn, microscopic PR residues from dry etching.
Gold Plating Bench (Technic SEMCON 1000)
Standard plating recipes are described and taught during the equipment training for this tool.
Electroplating first requires a Gold seed layer to be present on all surfaces to be plated. Common ways to produce this are to:
- Sputter-coat a thin (~10nm) Au layer on all surfaces of the wafer, being careful to consider shadowing effects during the dep (eg. in high-aspect ratio trenches).
- Perform photolithography to protect (and prevent plating) in desired areas - areas with no photoresist will be plated.
- Perform the electroplating on the Technic SemCon, contacting the seed layer with electrodes and executing the program for the desired current/time to achieve the plating thickness (typically microns).
- Strip the photoresist using standard solvents.
- Use the Oxford Ion Mill to blanket etch the 10nm seed layer all over the wafer (the 10nm removed from the plated regions will be negligible).
Chemi-Mechanical Polishing (CMP)
To Be Added
Mechanical Polishing (Allied)
To Be Added