Wet Etching Recipes: Difference between revisions
(Text replacement - "/wiki/index.php" to "/w/index.php") |
(moved and emphasized link to master table.) |
||
Line 1: | Line 1: | ||
'''See the [https://wiki.nanotech.ucsb.edu/w/index.php?title=Wet_Etching_Recipes#The_Master_Table_of_Wet_Etching_.28Include_All_Materials.29 Master Wet Etching Table]''' at the bottom of this page for wet-etch rates in various experiments we have tested. |
'''<u>See the [https://wiki.nanotech.ucsb.edu/w/index.php?title=Wet_Etching_Recipes#The_Master_Table_of_Wet_Etching_.28Include_All_Materials.29 <big>Master Wet Etching Table</big>]</u>''' at the bottom of this page for wet-etch rates in various experiments we have tested. |
||
== |
==Chemicals Available== |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
[http://www.sciencedirect.com/science/article/pii/S0927796X00000279 Guide to references on III±V semiconductor chemical etching] |
[http://www.sciencedirect.com/science/article/pii/S0927796X00000279 Guide to references on III±V semiconductor chemical etching] |
||
Line 17: | Line 19: | ||
==Metal Etching== |
==Metal Etching== |
||
*[//wiki.nanotech.ucsb.edu/w/images/c/c3/Ta_and_Cr_E-beam_deposition_and_wet_etch_test.pdf Selective Wet Etch of Cr over Ta using Cr Etchant] |
*[//wiki.nanotech.ucsb.edu/w/images/c/c3/Ta_and_Cr_E-beam_deposition_and_wet_etch_test.pdf Selective Wet Etch of Cr over Ta using Cr Etchant] |
||
*[//wiki.nanotech.ucsb.edu/w/images/d/dc/ITO_Deposition-250C-Ebeam2-HCl-Wet-Etch.pdf Wet Etch of ITO using Heated, Diluted HCl Solution] |
*[//wiki.nanotech.ucsb.edu/w/images/d/dc/ITO_Deposition-250C-Ebeam2-HCl-Wet-Etch.pdf Wet Etch of ITO using Heated, Diluted HCl Solution] |
||
Line 28: | Line 31: | ||
==Organic removal== |
==Organic removal== |
||
* |
*Piranha Solution. '''Careful!''' Read about how to prepare and handle this safely: |
||
** |
**[http://web.mit.edu/cortiz/www/PiranhaSafety.doc MIT's Piranha Solution safety document] |
||
** |
**[https://www.ehs.harvard.edu/sites/default/files/lab_safety_guideline_piranha_etch.pdf Harvard EHS's Handling Document] |
||
==Gold Plating== |
==Gold Plating== |
||
Line 36: | Line 40: | ||
==[[Chemical-Mechanical Polisher (Logitech)|Chemi-Mechanical Polishing (CMP)]]== |
==[[Chemical-Mechanical Polisher (Logitech)|Chemi-Mechanical Polishing (CMP)]]== |
||
== |
==[[Mechanical Polisher (Allied)|Mechanical Polishing (Allied)]]== |
||
==Adding a new entry to the Table== |
==Adding a new entry to the Table== |
||
When entering a new etch into the table: |
When entering a new etch into the table: |
||
* Make a row for every etchant used in the solution such that the information can be sorted by etchant. For example, the InP etch HCl:H3PO4(1:3) and H3PO4:HCl(3:1). |
|||
* |
*Make a row for every etchant used in the solution such that the information can be sorted by etchant. For example, the InP etch HCl:H3PO4(1:3) and H3PO4:HCl(3:1). |
||
*Likewise, if etch is known to be selective to multiple materials the etch should have a row for each material. For example HCl:H3PO4(1:3) is selective to both InGaAs and InGaAsP. |
|||
This multiple entry method may seem laborious for the person entering a new etch, however the power of sorting by selective materials and chemicals in a table with all materials is great. |
This multiple entry method may seem laborious for the person entering a new etch, however the power of sorting by selective materials and chemicals in a table with all materials is great. |
||
{| class="wikitable sortable" |
{| class="wikitable sortable" |
||
|- |
|- |
||
! |
!Material!!Etchant!!Rate (nm/min)!!Anisotropy!!Selective to!!Selectivity!!Ref.!!Notes!!Confirmed by!!Extra column |
||
|- |
|- |
||
| |
|InP||HCl:H3PO4(1:3)||~1000||Highly||InGaAs||High||[http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)]||Example||Jon Doe||Example |
||
|- |
|- |
||
| |
|InP||HCl:H3PO4(1:3)||~1000||Highly||InGaAsP||High||[http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)]||Example||Jon Doe||Example |
||
|- |
|- |
||
| |
|InP||H3PO4:HCl(3:1)||~1000||Highly||InGaAs||High||[http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)]||Example||Jon Doe||Example |
||
|- |
|- |
||
| |
|InP||H3PO4:HCl(3:1)||~1000||Highly||InGaAsP||High||[http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)]||Example||Jon Doe||Example |
||
|} |
|} |
||
Line 61: | Line 67: | ||
{| class="wikitable sortable" |
{| class="wikitable sortable" |
||
|- |
|- |
||
! |
!Material!!Etchant!!Rate (nm/min)!!Anisotropy!!Selective to!!Selectivity!!Ref.!!Notes!!Confirmed By/Date |
||
|- |
|- |
||
| |
|InP||HCl:H3PO4 (1:3)||~1000||Highly||InGaAs||High||[http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)]|| ||Jon Doe |
||
|- |
|- |
||
|InP |
|InP |
||
Line 75: | Line 81: | ||
|Jon Doe |
|Jon Doe |
||
|- |
|- |
||
| |
|InP||H3PO4:HCl (3:1)||~1000||Highly||InGaAs||High||[http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)]|| ||Jon Doe |
||
|- |
|- |
||
|InP |
|InP |
||
Line 87: | Line 93: | ||
|Jon Doe |
|Jon Doe |
||
|- |
|- |
||
| |
|Al2O3 ''(ALD Plasma 300C)''||Developer: 300MIF||~1.6||None |
||
| |
|Most non-Al Materials. |
||
| |
|High||Measured in-house||Rate slows with time.||JTB |
||
|- |
|- |
||
| |
|Al2O3 ''(ALD Plasma 300C)''||Developer: 400K||~2.2||None |
||
| |
|Most non-Al Materials. |
||
| |
|High||Measured in-house||Rate slows with time.||JTB |
||
|- |
|- |
||
| |
|Al2O3 ''(ALD Plasma 300C)''||Developer: 400K (1:4)||~1.6||None |
||
| |
|Most non-Al Materials. |
||
| |
|High||Measured in-house||Rate slows with time.||JTB |
||
|- |
|- |
||
| |
|Al2O3 ''(ALD Plasma 300C)''||NH4OH:H2O2:H2O (1:2:50)||~<0.5|| || || ||Measured in-house||Rate slows with time||JTB |
||
|- |
|- |
||
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=Sputtering_Recipes#Al2O3_deposition_.28IBD.29 Al2O3 ''(IBD)''] |
|[https://wiki.nanotech.ucsb.edu/w/index.php?title=Sputtering_Recipes#Al2O3_deposition_.28IBD.29 Al2O3 ''(IBD)''] |
Revision as of 23:04, 6 July 2022
See the Master Wet Etching Table at the bottom of this page for wet-etch rates in various experiments we have tested.
Chemicals Available
- The Chemical Lists show stocked chemicals, photolithography chemicals, and how to bring new chemicals.
References
- Etch rates for Micromachining Processing (IEEE Jnl. MEMS, 1996) - includes tables of etch rates of numerous metals vs. various wet and dry etchants.
- Etch rates for micromachining-Part II (IEEE Jnl. MEMS, 2003) - expanded tables containing resists, dielectrics, metals and semiconductors vs. many wet etch chemicals.
- Guide to references on III±V semiconductor chemical etching - exhaustive list of wet etchants for etching various semiconductors, including selective etches.
- Transene's Chemical Compatibility Chart provides a useful quick-reference for which Transene etchants attack which materials.
- As a side-note, Transene provides many pre-mixed solutions that you can order, saving you the time and uncertainty of measuring/mixing such chemicals yourself. Make sure you check with us before ordering so we know how to handle the chemical before it arrives.
Compound Semiconductor Etching
Guide to references on III±V semiconductor chemical etching
Please add any confirmed etches from this reference to the The Master Table of Wet Etching (Include All Materials).
Metal Etching
- Selective Wet Etch of Cr over Ta using Cr Etchant
- Wet Etch of ITO using Heated, Diluted HCl Solution
Silicon etching
Etch rates for micromachining processing
Etch rates for micromachining processing-part II
Please add any confirmed etches from this reference to the The Master Table of Wet Etching (Include All Materials).
Organic removal
- Piranha Solution. Careful! Read about how to prepare and handle this safely:
Gold Plating
Chemi-Mechanical Polishing (CMP)
Mechanical Polishing (Allied)
Adding a new entry to the Table
When entering a new etch into the table:
- Make a row for every etchant used in the solution such that the information can be sorted by etchant. For example, the InP etch HCl:H3PO4(1:3) and H3PO4:HCl(3:1).
- Likewise, if etch is known to be selective to multiple materials the etch should have a row for each material. For example HCl:H3PO4(1:3) is selective to both InGaAs and InGaAsP.
This multiple entry method may seem laborious for the person entering a new etch, however the power of sorting by selective materials and chemicals in a table with all materials is great.
Material | Etchant | Rate (nm/min) | Anisotropy | Selective to | Selectivity | Ref. | Notes | Confirmed by | Extra column |
---|---|---|---|---|---|---|---|---|---|
InP | HCl:H3PO4(1:3) | ~1000 | Highly | InGaAs | High | Lamponi (p.102) | Example | Jon Doe | Example |
InP | HCl:H3PO4(1:3) | ~1000 | Highly | InGaAsP | High | Lamponi (p.102) | Example | Jon Doe | Example |
InP | H3PO4:HCl(3:1) | ~1000 | Highly | InGaAs | High | Lamponi (p.102) | Example | Jon Doe | Example |
InP | H3PO4:HCl(3:1) | ~1000 | Highly | InGaAsP | High | Lamponi (p.102) | Example | Jon Doe | Example |
The Master Table of Wet Etching (Include All Materials)
Use the ↑ ↓ Arrows in the header row to sort the entire table by material, selectivity, etchant etc.
Material | Etchant | Rate (nm/min) | Anisotropy | Selective to | Selectivity | Ref. | Notes | Confirmed By/Date |
---|---|---|---|---|---|---|---|---|
InP | HCl:H3PO4 (1:3) | ~1000 | Highly | InGaAs | High | Lamponi (p.102) | Jon Doe | |
InP | HCl:H3PO4 (1:3) | ~1000 | Highly | InGaAsP | High | Lamponi (p.102) | Jon Doe | |
InP | H3PO4:HCl (3:1) | ~1000 | Highly | InGaAs | High | Lamponi (p.102) | Jon Doe | |
InP | H3PO4:HCl (3:1) | ~1000 | Highly | InGaAsP | High | Lamponi (p.102) | Jon Doe | |
Al2O3 (ALD Plasma 300C) | Developer: 300MIF | ~1.6 | None | Most non-Al Materials. | High | Measured in-house | Rate slows with time. | JTB |
Al2O3 (ALD Plasma 300C) | Developer: 400K | ~2.2 | None | Most non-Al Materials. | High | Measured in-house | Rate slows with time. | JTB |
Al2O3 (ALD Plasma 300C) | Developer: 400K (1:4) | ~1.6 | None | Most non-Al Materials. | High | Measured in-house | Rate slows with time. | JTB |
Al2O3 (ALD Plasma 300C) | NH4OH:H2O2:H2O (1:2:50) | ~<0.5 | Measured in-house | Rate slows with time | JTB | |||
Al2O3 (IBD) | HF ("Buffered HF Improved", Transene) | ~170 | None | Photoresist | High | Measured in-house | May need to increase adhesion with thin SiO2 layer, and 100°C baked HMDS. | Biljana Stamenic,
2017-12 |
Al2O3 (IBD) | Developer: 726 MiF | 3.5 | None | Most non-Al Materials. | High | Measured in-house | Demis D. John,
2017-11 | |
Al2O3 (AJA#4) | Developer: 300 MiF | 4.30 | None | Most non-Al Materials. | High | Measured in-house | Demis D. John
2018-02 | |
SiO2 (PECVD #1) | HF ("Buffered HF Improved", Transene) | ~500 | None | Photoresist | High | Measured in-house | May need to increase adhesion with 100°C baked HMDS. | Biljana Stamenic
2017 |
SiO2 (PECVD #2) | HF ("Buffered HF Improved", Transene) | ~500 | None | Photoresist | High | Measured in-house | May need to increase adhesion with 100°C baked HMDS. | Biljana Stamenic
2017 |
SiO2 (IBD) | HF ("Buffered HF Improved", Transene) | ~350 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2016 | |
Si3N4 (PECVD#1) | HF ("Buffered HF Improved", Transene) | 85 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2018-04 | |
Si3N4 (PECVD#2) | HF ("Buffered HF Improved", Transene) | 35–45 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2018-05 | |
Si3N4 Low-Stress (PECVD#2) | HF ("Buffered HF Improved", Transene) | 35–50 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2018-05 | |
Si3N4 (IBD) | HF ("Buffered HF Improved", Transene) | 5–15 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2014 | |
Ta2O5 (IBD) | HF ("Buffered HF Improved", Transene) | 0.4 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2016-12 | |
TiO2 (IBD) | HF ("Buffered HF Improved", Transene) | 1.0–2.0 | None | Photoresist | High | Measured in-house | Biljana Stamenic
2014-12 | |
Si (<100> crystalline) | KOH (45%) @ 87°C | ~730 | High, Crystallographic, ~55° | Low-Stress Si3N4 - either PECVD #2 or Commercial LPCVD Si3N4
Other Si3N4 also OK. |
LS-SiN: High
PR etches quickly, SiO2 etches slowly. |
Measured In-House
- Search online. |
Use the Covered, Heated vertical bath (Dedi cated bath in Bay 4). Slight Bubbler. | Brian Thibeault
2017 |