E-Beam Evaporation Recipes: Difference between revisions

From UCSB Nanofab Wiki
Jump to navigation Jump to search
(Updated pocket numbers and tooling factors to match new e-gun crucible.)
Line 23: Line 23:
! width="75" align="center" bgcolor="#D0E7FF" |'''Position'''
! width="75" align="center" bgcolor="#D0E7FF" |'''Position'''
! width="75" align="center" bgcolor="#D0E7FF" |'''Hearth / Crucible'''
! width="75" align="center" bgcolor="#D0E7FF" |'''Hearth / Crucible'''
! width="85" align="center" bgcolor="#D0E7FF" |'''Film Number'''
! width="75" align="center" bgcolor="#D0E7FF" |'''Density'''
! width="75" align="center" bgcolor="#D0E7FF" |'''Density'''
! width="75" align="center" bgcolor="#D0E7FF" |'''Z Ratio'''
! width="75" align="center" bgcolor="#D0E7FF" |'''Z Ratio'''
Line 32: Line 31:
|7 (6, 7, 8)
|7 (6, 7, 8)
|C
|C
|5
|10.5
|10.5
|0.529
|0.529
Line 41: Line 39:
|1
|1
|C
|C
|6
|2.7
|2.7
|1.080
|1.080
Line 50: Line 47:
|(6, 7, 8)
|(6, 7, 8)
|C
|C
|6
|3.97
|3.97
|0.336
|0.336
Line 59: Line 55:
|3
|3
|C
|C
|4
|19.3
|19.3
|0.381
|0.381
Line 68: Line 63:
|(6, 7, 8)
|(6, 7, 8)
|C
|C
|5
|17.63
|17.63
|0.397
|0.397
Line 77: Line 71:
|(6, 7, 8)
|(6, 7, 8)
|H
|H
|2
|2.250
|2.250
|3.260
|3.260
Line 86: Line 79:
|(6, 7, 8)
|(6, 7, 8)
|C
|C
|1
|8.9
|8.9
|0.343
|0.343
Line 94: Line 86:
|Fe
|Fe
|(6, 7, 8)
|(6, 7, 8)
|
|
|
|7.86
|7.86
Line 104: Line 95:
|8 (6, 7, 8)
|8 (6, 7, 8)
|C
|C
|6
|5.35
|5.35
|0.516
|0.516
Line 113: Line 103:
|(6, 7, 8)
|(6, 7, 8)
|H
|H
|3
|7.89
|7.89
|0.670
|0.670
Line 123: Line 112:
|(6, 7, 8)
|(6, 7, 8)
|
|
|6
|3.58
|3.58
|0.411
|0.411
Line 131: Line 119:
|Mo
|Mo
|(6, 7, 8)
|(6, 7, 8)
|
|
|
|10.2
|10.2
Line 141: Line 128:
|5
|5
|H
|H
|1
|8.91
|8.91
|0.331
|0.331
Line 150: Line 136:
|(6, 7, 8)
|(6, 7, 8)
|H
|H
|6
|8.50
|8.50
|0.3258
|0.3258
Line 159: Line 144:
|(6, 7, 8)
|(6, 7, 8)
|C
|C
|6
|8.57
|8.57
|0.516 ( should be 0.492)
|0.516 ( should be 0.492)
Line 168: Line 152:
|6 (6, 7, 8)
|6 (6, 7, 8)
|H
|H
|9
|12.0
|12.0
|0.357
|0.357
Line 177: Line 160:
|4
|4
|C
|C
|8
|21.40
|21.40
|0.245
|0.245
Line 186: Line 168:
|(6, 7, 8)
|(6, 7, 8)
|C
|C
|6
|12.362
|12.362
|0.182
|0.182
Line 195: Line 176:
|(6, 7, 8)
|(6, 7, 8)
|H
|H
|2
|2.32
|2.32
|0.712
|0.712
Line 204: Line 184:
|(6, 7, 8)
|(6, 7, 8)
|C
|C
|6
|2.13
|2.13
|0.87
|0.87
Line 213: Line 192:
|(6, 7, 8)
|(6, 7, 8)
|C
|C
|6
|2.648
|2.648
|1.00
|1.00
Line 223: Line 201:
|(6, 7, 8)
|(6, 7, 8)
|C
|C
|6
|4.28
|4.28
|0.727
|0.727
Line 232: Line 209:
|(6, 7, 8)
|(6, 7, 8)
|H
|H
|6
|16.6
|16.6
|0.262
|0.262
Line 241: Line 217:
|(6, 7, 8)
|(6, 7, 8)
|C
|C
|6
|19.3
|19.3
|0.163
|0.163
Line 250: Line 225:
|2
|2
|H
|H
|3
|4.50
|4.50
|0.628
|0.628

Revision as of 16:18, 30 March 2022

Back to Vacuum Deposition Recipes.

Vapor Pressure Chart and Materials Deposition Table

Aluminum Deposition

E-Beam 1 (Sharon)

Ar-Ion Beam Source

Materials Table (E-Beam #1)

There are four hearth "positions" able to be loaded at any one time, meaning only up to 4 materials can be evaporated without breaking vacuum. Now able to handle Four-4" wafers in one run.

Material Position Hearth / Crucible Density Z Ratio Tooling Comments
Ag 7 (6, 7, 8) C 10.5 0.529 110
Al 1 C 2.7 1.080 102
Al2O3 (6, 7, 8) C 3.97 0.336
Au 3 C 19.3 0.381 92 Bazookas can be used at 20-30Å/sec.
AuGe (6, 7, 8) C 17.63 0.397 Composition unpredictable unless you practically empty the crucible.
C (6, 7, 8) H 2.250 3.260 Carbon. Must sweep beam. 1Å/sec (fluctuating 0.4–0.9Å/sec) at ~1.4–1.6 emission.
Co (6, 7, 8) C 8.9 0.343 Use only with permission
Fe (6, 7, 8) 7.86 0.349
Ge 8 (6, 7, 8) C 5.35 0.516
Gd (6, 7, 8) H 7.89 0.670 Use only with permission
MgO (6, 7, 8) 3.58 0.411 Use only with permission
Mo (6, 7, 8) 10.2 0.257
Ni 5 H 8.91 0.331 104 Prone to spitting. Cool down for 15 minutes before venting.
NiCr (6, 7, 8) H 8.50 0.3258 Density and z-ratio for Nichrome IV
Nb (6, 7, 8) C 8.57 0.516 ( should be 0.492) Cool down for at least 35 minutes before venting.
Pd 6 (6, 7, 8) H 12.0 0.357 112
Pt 4 C 21.40 0.245 100 Prone to spitting. Evaporate at 1.5Å/sec or less.
Ru (6, 7, 8) C 12.362 0.182 Prone to spitting. Evaporate at 1.0Å/sec or less. Cool down for 20 minutes before venting.
Si (6, 7, 8) H 2.32 0.712 Cool down very slowly after evaporating lest you crack the source.
SiO (6, 7, 8) C 2.13 0.87 Use only with permission
SiO2 (6, 7, 8) C 2.648 1.00 Use only with permission.

Please change the crystal and the upper mirror after evaporating oxide. Density 2.2-2.7 according to thin film dep. table.

SrF2 (6, 7, 8) C 4.28 0.727 Use only with permission
Ta (6, 7, 8) H 16.6 0.262 Requires extremely high current. Minimum 35 minute cool down. Hearth #3 may be used. Call maintainer before you try Ta.
W (6, 7, 8) C 19.3 0.163
Ti 2 H 4.50 0.628 109

E-Beam 2 (Custom)

Materials Table (E-Beam #2)

Material Density, g/cm3 Z Ratio Tooling factor, % Comments
Al2O3 3.97 0.336 140.0 Tony could you please check this?
CeO2 7.13 1.000 252.0 Deposition at room temperature (see the details in the following file)
CeO2 7.13 1.000 117.0 Deposition at 200 C (see the details in the following file)
CeO2 7.13 1.000 99.7 Deposition at 250 C (see the details in the following file)
GeO2 6.24 1.000 139.0
ITO 6.43-7.14 1.000 139.0 z ratio unknown
MgO 3.58 0.411 157.6 OK
Si 2.32 0.712 150.0
SiO2 2.648 1.000 157.6 Density 2.2-2.7 according to thin film deposition tables
SiOx 2.13 0.87 130.0
SrF2 4.28 0.727 140.0
Ta2O5 8.2 0.30 157.6
TiO2 4.26 0.400 139.0

ITO deposition (E-Beam 2)

CeO2 deposition (E-Beam 2)

E-Beam 3 (Temescal)

Materials Table (E-Beam #3)

The following materials are always installed in the evaporator. There are 4 materials available on each gun (front/rear guns), allowing for co-deposition by running both guns simultaneously.

Material Gun Hearth /Crucible Process Gain, A/sec/%pwr Film Number Density, g/cm3 Z Ratio Tooling, % Comments
Au Front C 2.0 3 19.30 0.381 56
Ni Front C 0.5 2 8.91 0.331 67
Pt Front C 0.4 1 21.40 0.245 67
Ti Front C 5.0 4 4.50 0.628 67
Ag Rear C 10.0 2 10.50 0.529 67
Al Rear C 10.0 1 2.70 1.080 53
Ge Rear C 10.0 3 5.35 0.516 80
Pd Rear C 0.9 4 12.038 0.357 48

E-Beam 4 (CHA)

Materials Table (E-Beam #4)

Material Density, g/cm3 Z Ratio Master tooling, % Process Gain, A/sec/%pwr Comments
Ag 10.50 0.529 110 10.0
Al 2.70 1.080 110 6.0 updated 9/1/2021
Au 19.30 0.381 120 10.0
Co 8.90 0.343 150 5.0
Cr 7.20 0.305 140 10.0
Fe 7.86 0.349 165 10.0
Ge 5.35 0.516 126 10.0
Hf 13.09 0.360 150 10.0
Ir 22.40 0.129 130 10.0
Ni 8.91 0.331 150 5.0
NiCr 8.50 0.3258 140 10.0 density and z ratio for Nichrome IV
NiFe 8.70 1.000 100 10.0
Pd 12.038 0.357 112 10.0
Pt 21.40 0.245 130 10.0
Ru 12.362 0.182 100 10.0
Ti 4.50 0.628 183 10.0
Zr 6.49 0.600 150 10.0