E-Beam Evaporation Recipes: Difference between revisions

From UCSB Nanofab Wiki
Jump to navigation Jump to search
Content deleted Content added
Barreraz (talk | contribs)
Line 352: Line 352:
! width="45" bgcolor="#D0E7FF" align="center" |'''Process Gain, A/sec/%pwr'''
! width="45" bgcolor="#D0E7FF" align="center" |'''Process Gain, A/sec/%pwr'''
! width="100" bgcolor="#D0E7FF" align="center" |'''Comments'''
! width="100" bgcolor="#D0E7FF" align="center" |'''Comments'''
|-
|Ag
|10.50
|0.529
|110
|10.0
|
|-
|Al
|2.70
|1.080
|110
|6.0
|updated 9/1/2021
|-
|-
|Au
|Au
|Front
|C
|2.0
|3
|19.30
|19.30
|0.381
|0.381
|120
|56
|10.0
|
|
|-
|-
|Co
|Ni
|Front
|8.90
|C
|0.343
|150
|0.5
|5.0
|2
|8.91
|0.331
|67
|
|
|-
|-
|Cr
|Pt
|Front
|7.20
|C
|0.305
|140
|0.4
|1
|10.0
|21.40
|0.245
|67
|
|
|-
|-
|Fe
|Ti
|Front
|7.86
|C
|0.349
|165
|5.0
|4
|10.0
|4.50
|0.628
|67
|
|
|-
|-
|Ge
|Ag
|Rear
|5.35
|C
|0.516
|126
|10.0
|10.0
|2
|10.50
|0.529
|67
|
|
|-
|-
|Hf
|Al
|Rear
|13.09
|C
|0.360
|150
|10.0
|10.0
|1
|2.70
|1.080
|53
|
|
|-
|-
|Ir
|Ge
|Rear
|22.40
|C
|0.129
|130
|10.0
|
|-
|Ni
|8.91
|0.331
|150
|5.0
|
|-
|NiCr
|8.50
|0.3258
|140
|10.0
|density and z ratio for Nichrome IV
|-
|NiFe
|8.70
|1.000
|100
|10.0
|10.0
|3
|5.35
|0.516
|80
|
|
|-
|-
|Pd
|Pd
|Rear
|C
|0.9
|4
|12.038
|12.038
|0.357
|0.357
|112
|48
|10.0
|
|-
|Pt
|21.40
|0.245
|130
|10.0
|
|-
|Ru
|12.362
|0.182
|100
|10.0
|
|-
|Ti
|4.50
|0.628
|183
|10.0
|
|-
|Zr
|6.49
|0.600
|150
|10.0
|
|
|-
|-

Revision as of 14:57, 21 January 2026

Back to Vacuum Deposition Recipes.

Vapor Pressure Chart and Materials Deposition Table

Aluminum Deposition

E-Beam 1 (Sharon)

Ar-Ion Beam Source

Materials Table (E-Beam #1)

There are four hearth "positions" able to be loaded at any one time, meaning only up to 4 materials can be evaporated without breaking vacuum. Now able to handle Four-4" wafers in one run.

Material Position Hearth / Crucible Density Z Ratio Tooling Comments
Ag 7 (6, 7, 8) C 10.5 0.529 110
Al 1 C 2.7 1.080 102
Al2O3 (6, 7, 8) C 3.97 0.336
Au 3 C 19.3 0.381 92 Bazookas can be used at 20-30Å/sec.
AuGe (6, 7, 8) C 17.63 0.397 Composition unpredictable unless you practically empty the crucible.
C (6, 7, 8) H 2.250 3.260 Carbon. Must sweep beam. 1Å/sec (fluctuating 0.4–0.9Å/sec) at ~1.4–1.6 emission.
Co (6, 7, 8) C 8.9 0.343 Use only with permission
Fe (6, 7, 8) 7.86 0.349
Ge 8 (6, 7, 8) C 5.35 0.516
Gd (6, 7, 8) H 7.89 0.670 Use only with permission
MgO (6, 7, 8) 3.58 0.411 Use only with permission
Mo (6, 7, 8) 10.2 0.257
Ni 5 H 8.91 0.331 104 Prone to spitting. Cool down for 15 minutes before venting.
NiCr (6, 7, 8) H 8.50 0.3258 Density and z-ratio for Nichrome IV
Nb (6, 7, 8) C 8.57 0.516 ( should be 0.492) Cool down for at least 35 minutes before venting.
Pd 6 (6, 7, 8) H 12.0 0.357 112
Pt 4 C 21.40 0.245 100 Prone to spitting. Evaporate at 1.5Å/sec or less.
Ru (6, 7, 8) C 12.362 0.182 Prone to spitting. Evaporate at 1.0Å/sec or less. Cool down for 20 minutes before venting.
Si (6, 7, 8) H 2.32 0.712 Cool down very slowly after evaporating lest you crack the source.
SiO (6, 7, 8) C 2.13 0.87 Use only with permission
SiO2 (6, 7, 8) C 2.648 1.00 Use only with permission.

Please change the crystal and the upper mirror after evaporating oxide. Density 2.2-2.7 according to thin film dep. table.

SrF2 (6, 7, 8) C 4.28 0.727 Use only with permission
Ta (6, 7, 8) H 16.6 0.262 Requires extremely high current. Minimum 35 minute cool down. Hearth #3 may be used. Call maintainer before you try Ta.
W (6, 7, 8) C 19.3 0.163
Ti 2 H 4.50 0.628 109

E-Beam 2 (Custom)

Materials Table (E-Beam #2)

ITO deposition (E-Beam 2)

CeO2 deposition (E-Beam 2)

E-Beam 3 (Temescal)

Materials Table (E-Beam #3)

The following materials are always installed in the evaporator. There are 4 materials available on each gun (front/rear guns), allowing for co-deposition by running both guns simultaneously.

Material Gun Hearth /Crucible Process Gain, A/sec/%pwr Film Number Density, g/cm3 Z Ratio Tooling, % Comments
Au Front C 2.0 3 19.30 0.381 56
Ni Front C 0.5 2 8.91 0.331 67
Pt Front C 0.4 1 21.40 0.245 67
Ti Front C 5.0 4 4.50 0.628 67
Ag Rear C 10.0 2 10.50 0.529 67
Al Rear C 10.0 1 2.70 1.080 53
Ge Rear C 10.0 3 5.35 0.516 80
Pd Rear C 0.9 4 12.038 0.357 48

E-Beam 4 (CHA)

Materials Table (E-Beam #4)

Material Density, g/cm3 Z Ratio Master tooling, % Process Gain, A/sec/%pwr Comments
Au Front C 2.0 3 19.30 0.381 56
Ni Front C 0.5 2 8.91 0.331 67
Pt Front C 0.4 1 21.40 0.245 67
Ti Front C 5.0 4 4.50 0.628 67
Ag Rear C 10.0 2 10.50 0.529 67
Al Rear C 10.0 1 2.70 1.080 53
Ge Rear C 10.0 3 5.35 0.516 80
Pd Rear C 0.9 4 12.038 0.357 48