E-Beam 1 (Sharon): Difference between revisions

From UCSB Nanofab Wiki
Jump to navigation Jump to search
No edit summary
(updated "Detailed Specifications")
Line 11: Line 11:
|toolid=7
|toolid=7
}}
}}
= About =
=About=
The Sharon is a cryo-pumped thin film evaporator with a Temescal four hearth 270° bent electron beam evaporation source. The system incorporates a Commonwealth Scientific Corp. ion source for in-situ sample cleaning. Fixturing in the Sharon will accept any size sample up to 3.5-inch diameter. In addition, a rotation fixture is easily installed which permits adjustable angle, 360° variable speed rotation of any size sample, up to 1.5-inch diameter. This feature is particularly useful for promoting step coverage of irregular surfaces.
The Sharon is a cryo-pumped thin film evaporator with a Temescal four hearth 270° bent electron beam evaporation source. The system incorporates a Commonwealth Scientific Corp. ion source for in-situ sample cleaning. Fixturing in the Sharon will accept any size sample up to 3.5-inch diameter. In addition, a rotation fixture is easily installed which permits adjustable angle, 360° variable speed rotation of any size sample, up to 1.5-inch diameter. This feature is particularly useful for promoting step coverage of irregular surfaces.
Line 19: Line 19:
The Sharon is used for the evaporation of high purity metals, e.a. Al, Au, Ni, Ge, AuGe, Ti, Pt etc., for interconnect and ohmic contact metalization for fabrication of III-V compound semiconductor and silicon device fabrication.
The Sharon is used for the evaporation of high purity metals, e.a. Al, Au, Ni, Ge, AuGe, Ti, Pt etc., for interconnect and ohmic contact metalization for fabrication of III-V compound semiconductor and silicon device fabrication.


= Detailed Specifications =
=Detailed Specifications=

*Cryopump: CTI Cryotorr 8F with air-cooled compressor
*Cryopump: CTI Cryotorr 8F with air-cooled compressor
*Pumping speed: 4,000 l/sec. for H2O, 1,500 l/sec. for air, 2,200 l/sec. for H2, 200 l/sec. for Ar
*Pumping speed: 4,000 l/sec. for H2O, 1,500 l/sec. for air, 2,200 l/sec. for H2, 200 l/sec. for Ar
*Mechanical Pump: Varian, Model SD700, 35 CFM
*Mechanical Pump: Ebara EV-A10, 35 CFM
*Electron Beam Source: Temescal, Model STIH-270-2MB, four 15 cc hearths
*Electron Beam Power Supply: Temescal, Model CV8A-111, -5 to -10 kV dc, 0.8A dc max. beam current; XYS-8 Sweep Control
*Electron Beam Source: Temescal, Model STIH-270-2MB, four 15 cc hearths
*Electron Beam Power Supply: Temescal, Model CV-6SLX, 0 - 10 kV dc, 0–600 mA dc beam current; TemEBeam Sweep Control
*Deposition Control: Inficon IC 6000, 6 film programs; 37 parameters for automatic or manual deposition control based on a resonating quartz crystal sensor
*Deposition Control: : Inficon IC/5, 6 film programs; 37 parameters for automatic or manual deposition control based on a resonating quartz crystal sensor
*Ion Source: Commonwealth Scientific Corp., MOD. 2. Kaufman-type, 3cm ion source; beam currents to 100mA at 1000eV
*Ion Source: Commonwealth Scientific Corp., MOD. 2. Kaufman-type, 3cm ion source; beam currents to 100mA at 1000eV
*Pieces up to Four - 4" wafers in one run.
*Pieces up to Four - 4" wafers in one run.
*For single wafers: tilt with motorized rotation and sample lowering for higher effective rates, sidewall coverage, angled evaporation.
*For single wafers: tilt with motorized rotation and sample lowering for higher effective rates, sidewall coverage, angled evaporation.

=Documentation=


= Documentation =
*[https://wiki.nanotech.ucsb.edu/w/images/9/90/EB-1_operation_instructions_rev2.pdf Operating Instructions]
*[https://wiki.nanotech.ucsb.edu/w/images/9/90/EB-1_operation_instructions_rev2.pdf Operating Instructions]


= Recipes =
=Recipes=

* See the [[E-Beam_Evaporation_Recipes#Materials_Table_(E-Beam #1)|'''<u>E-Beam Recipe Page</u>''']], for the materials tables and deposition parameters for various materials.
*See the [[E-Beam_Evaporation_Recipes#Materials_Table_(E-Beam #1)|'''<u>E-Beam Recipe Page</u>''']], for the materials tables and deposition parameters for various materials.

Revision as of 18:16, 8 September 2022

E-Beam 1 (Sharon)
E-beam1.jpg
Location Bay 3
Tool Type Vacuum Deposition
Manufacturer Sharon Vacuum Co., Inc.
Description Four Pocket Electron Beam Evaporator

Primary Supervisor Michael Barreraz
(805) 893-4147
mikebarreraz@ece.ucsb.edu

Secondary Supervisor

Bill Millerski


Recipes Vacuum Deposition Recipes

SignupMonkey: Sign up for this tool


About

The Sharon is a cryo-pumped thin film evaporator with a Temescal four hearth 270° bent electron beam evaporation source. The system incorporates a Commonwealth Scientific Corp. ion source for in-situ sample cleaning. Fixturing in the Sharon will accept any size sample up to 3.5-inch diameter. In addition, a rotation fixture is easily installed which permits adjustable angle, 360° variable speed rotation of any size sample, up to 1.5-inch diameter. This feature is particularly useful for promoting step coverage of irregular surfaces.

A new fixture allowing up to four - 4" diameter wafers is now installed.

The Sharon is used for the evaporation of high purity metals, e.a. Al, Au, Ni, Ge, AuGe, Ti, Pt etc., for interconnect and ohmic contact metalization for fabrication of III-V compound semiconductor and silicon device fabrication.

Detailed Specifications

  • Cryopump: CTI Cryotorr 8F with air-cooled compressor
  • Pumping speed: 4,000 l/sec. for H2O, 1,500 l/sec. for air, 2,200 l/sec. for H2, 200 l/sec. for Ar
  • Mechanical Pump: Ebara EV-A10, 35 CFM
  • Electron Beam Source: Temescal, Model STIH-270-2MB, four 15 cc hearths
  • Electron Beam Power Supply: Temescal, Model CV-6SLX, 0 - 10 kV dc, 0–600 mA dc beam current; TemEBeam Sweep Control
  • Deposition Control: : Inficon IC/5, 6 film programs; 37 parameters for automatic or manual deposition control based on a resonating quartz crystal sensor
  • Ion Source: Commonwealth Scientific Corp., MOD. 2. Kaufman-type, 3cm ion source; beam currents to 100mA at 1000eV
  • Pieces up to Four - 4" wafers in one run.
  • For single wafers: tilt with motorized rotation and sample lowering for higher effective rates, sidewall coverage, angled evaporation.

Documentation

Recipes

  • See the E-Beam Recipe Page, for the materials tables and deposition parameters for various materials.