Rapid Thermal Processor (AET RX6): Difference between revisions
No edit summary |
(→About) |
||
Line 12: | Line 12: | ||
}} |
}} |
||
= About = |
= About = |
||
Our rapid thermal annealer is manufactured by AET. Heating is achieved through two banks of heat lamps that deliver optical energy through the all-quartz chamber. With this unit, near atmospheric pressure anneals in Nitrogen |
Our rapid thermal annealer is manufactured by AET. Heating is achieved through two banks of heat lamps that deliver optical energy through the all-quartz chamber. With this unit, near atmospheric pressure anneals in Oxygen Nitrogen and Forming Gas can be done to temperatures up to 1200°C for three minutes. An inner liner is used to prevent contamination to the main quartz chamber. A thermocouple and pyrometer are available for maintaining temperature control. The system can hold one 4-inch wafer or smaller substrates placed on top of a Silicon carrier wafer. Custom windows based control software has been added to the system by Sedona Visual Controls. All process parameters are monitored and stored. Typical anneals are done for: ohmic contact formation to semiconductors, implant activation, damage annealing, dopant activation, and film densification. A variety of materials can be annealed in the chamber, including Si, SiO<sub>2</sub>, Si<sub>3</sub>N<sub>4</sub>, GaAs, InP, GaSb, GaN, and metals. For materials that will decompose at the elevated temperatures, a dielectric anneal cap must be deposited on the wafer or an enclosed wafer holder must be used to prevent contamination of the chamber walls. |
||
= Detailed Specifications = |
= Detailed Specifications = |
Revision as of 23:45, 16 March 2017
|
About
Our rapid thermal annealer is manufactured by AET. Heating is achieved through two banks of heat lamps that deliver optical energy through the all-quartz chamber. With this unit, near atmospheric pressure anneals in Oxygen Nitrogen and Forming Gas can be done to temperatures up to 1200°C for three minutes. An inner liner is used to prevent contamination to the main quartz chamber. A thermocouple and pyrometer are available for maintaining temperature control. The system can hold one 4-inch wafer or smaller substrates placed on top of a Silicon carrier wafer. Custom windows based control software has been added to the system by Sedona Visual Controls. All process parameters are monitored and stored. Typical anneals are done for: ohmic contact formation to semiconductors, implant activation, damage annealing, dopant activation, and film densification. A variety of materials can be annealed in the chamber, including Si, SiO2, Si3N4, GaAs, InP, GaSb, GaN, and metals. For materials that will decompose at the elevated temperatures, a dielectric anneal cap must be deposited on the wafer or an enclosed wafer holder must be used to prevent contamination of the chamber walls.
Detailed Specifications
- Temperatures of 1000°C for 20 min., 1100°C for 5 min., 1200°C for 1 min. Nitrogen, Forming Gas, Dry Air at flows up to 10000 lpm TC use for anneals up to 1000°C Pyrometer for temperatures above 400°C
- Windows-based process monitoring and control software by Sedona Visual Controls
Max temp/Time
Temperature | Time |
1000°C | 1 Hour |
1100°C | 10 min |
1200°C | 3 min |
1300°C | 10 sec |