Tube Furnace (Tystar 8300): Difference between revisions

From UCSB Nanofab Wiki
Jump to navigation Jump to search
(→‎Recipes: link to recipes page)
Line 46: Line 46:
* DRYVAR.003 - ''DryOx, variable temp.''
* DRYVAR.003 - ''DryOx, variable temp.''
* ANNEAL.003 - ''Anneal with variable time and temperature''
* ANNEAL.003 - ''Anneal with variable time and temperature''

=== [[Thermal Processing Recipes#Tystar 8300|<u>Oxidation Rates & Data</u>]] ===
''See the above recipes page for data on oxidation rates for standard oxidation recipes.''


=Useful Information=
=Useful Information=
[[Media:TystarMechDrawWaferBoat.pdf|Tystar Wafer Boat Drawing - 4" Wafer with 0.5mm Slots]]
[//wiki.nanotech.ucsb.edu/w/images/8/89/TystarMechDrawWaferBoat.pdf Tystar Wafer Boat Drawing - 4" Wafer with 0.5mm Slots]


=See Also=
=See Also=
Line 57: Line 60:
=Operational Instructions=
=Operational Instructions=


*[[media:Tystar Operational Procedure.pdf|Operating Instructions]]
*[//wiki.nanotech.ucsb.edu/w/images/8/8a/Tystar_Operational_Procedure.pdf Operating Instructions]

Revision as of 01:08, 2 February 2021

Tube Furnace (Tystar 8300)
Tystar.jpg
Tool Type Thermal Processing
Location Bay 4
Supervisor Tony Bosch
Supervisor Phone (805) 893-3486
Supervisor E-Mail bosch@ece.ucsb.edu
Description Tystar 8" 3-Tube Oxidation/Annealing System
Manufacturer Tystar Corporation
Model Tystar 8300
Sign up for this tool


About

The three stack Tystar 8” furnace is used primarily for 3 processes. The processes are dedicated for specific tubes as follows:

  • Tube #1: SOG curing & low-temp oxidation
  • Tubes #2 and #3: Dry or wet oxidation of silicon (unprocessed, clean)
  • Tube #3: General furnace annealing & oxidation, including processed material

Each process tube can accomodate up to one hundred 8” wafers per cycle. We have boats for 2", 3", 4", 6", 8" and irregular shaped pieces. The maximum temperature is 1100°C for the system. Gases used are O2, Steam from DI-H2O, N2.

Process Information

Recipe Characterization Data, such as thermal oxidation times, can be found on the recipe page:

Use the BYU or Stanford Leland Jr. Thermal Oxidation Calculators to determine the time and temperature that will be necessary for your process needs. You can "calibrate" your oxidations to the Stanford calculator by adjusting the Partial Pressure on the calculator to match your experimental data.

Keep in mind that all process must be 30 minutes in length at a minimum. Processes less than 30 minutes will suffer from poor uniformity because the process tube will not have sufficient time to saturate with O2 or DI-H2O.

Recipes

The following are the available recipes on each furnace tube:

Tube 1:

  • SOG425.001 - Spin-On Glass Cure
  • ALGAAS.001 - Oxidation of AlGaAs

Tube 2:

  • WET1050.002 - WetOx at 1050°C
  • DRY1050.002 - DryOx at 1050°C
  • WETVAR.002 - WetOx, variable temp.
  • DRYVAR.002 - DryOx, variable temp.

Tube 3:

  • WET1050.003 - WetOx at 1050°C
  • DRY1050.003 - DryOx at 1050°C
  • WETVAR.003 - WetOx, variable temp.
  • DRYVAR.003 - DryOx, variable temp.
  • ANNEAL.003 - Anneal with variable time and temperature

Oxidation Rates & Data

See the above recipes page for data on oxidation rates for standard oxidation recipes.

Useful Information

Tystar Wafer Boat Drawing - 4" Wafer with 0.5mm Slots

See Also

Operational Instructions