E-Beam 1 (Sharon): Difference between revisions
Line 35: | Line 35: | ||
=Documentation= |
=Documentation= |
||
*[ |
*[https://wiki.nanotech.ucsb.edu/w/images/4/4a/EB-1_Operation_Instructions.pdf] |
||
=Recipes= |
=Recipes= |
Revision as of 00:42, 10 March 2023
|
About
The Sharon is a cryo-pumped thin film evaporator with a Temescal four hearth 270° bent electron beam evaporation source. The system incorporates a Commonwealth Scientific Corp. ion source for in-situ sample cleaning. Fixturing in the Sharon will accept any size sample up to 3.5-inch diameter. In addition, a rotation fixture is easily installed which permits adjustable angle, 360° variable speed rotation of any size sample, up to 1.5-inch diameter. This feature is particularly useful for promoting step coverage of irregular surfaces.
A new fixture allowing up to four - 4" diameter wafers is now installed.
The Sharon is used for the evaporation of high purity metals, e.a. Al, Au, Ni, Ge, AuGe, Ti, Pt etc., for interconnect and ohmic contact metalization for fabrication of III-V compound semiconductor and silicon device fabrication.
Detailed Specifications
- Cryopump: CTI Cryotorr 8F with air-cooled compressor
- Pumping speed: 4,000 l/sec. for H2O, 1,500 l/sec. for air, 2,200 l/sec. for H2, 200 l/sec. for Ar
- Mechanical Pump: Ebara EV-A10, 35 CFM
- Electron Beam Source: Temescal, Model STIH-270-2MB, four 15 cc hearths
- Electron Beam Power Supply: Temescal, Model CV-6SLX, 0 - 10 kV dc, 0–600 mA dc beam current; TemEBeam Sweep Control
- Deposition Control: : Inficon IC/5, 6 film programs; 37 parameters for automatic or manual deposition control based on a resonating quartz crystal sensor
- Ion Source: Commonwealth Scientific Corp., MOD. 2. Kaufman-type, 3cm ion source; beam currents to 100mA at 1000eV
- Pieces up to Four - 4" wafers in one run.
- For single wafers: tilt with motorized rotation and sample lowering for higher effective rates, sidewall coverage, angled evaporation.
Documentation
Recipes
- See the E-Beam Recipe Page, for the materials tables and deposition parameters for various materials.