E-Beam Evaporation Recipes: Difference between revisions

From UCSB Nanofab Wiki
Jump to navigation Jump to search
(Updated tooling factor for Al in E-beam#4.)
(Updated pocket numbers and tooling factors to match new e-gun crucible.)
Line 30: Line 30:
|-
|-
|Ag
|Ag
|7 (6, 7, 8)
|4
|C
|C
|5
|5
|10.5
|10.5
|0.529
|0.529
|140
|110
|
|
|-
|-
|Al
|Al
|2
|1
|C
|C
|6
|6
|2.7
|2.7
|1.080
|1.080
|118
|102
|
|
|-
|-
|Al<sub>2</sub>O<sub>3</sub>
|Al<sub>2</sub>O<sub>3</sub>
|(6, 7, 8)
|1
|C
|C
|6
|6
|3.97
|3.97
|0.336
|0.336
|169
|
|
|
|-
|-
|Au
|Au
|4
|3
|C
|C
|4
|4
|19.3
|19.3
|0.381
|0.381
|138
|92
|Bazookas can be used at 20-30Å/sec.
|Bazookas can be used at 20-30Å/sec.
|-
|-
|AuGe
|AuGe
|(6, 7, 8)
|3
|C
|C
|5
|5
|17.63
|17.63
|0.397
|0.397
|151
|
|Composition unpredictable unless you practically empty the crucible.
|Composition unpredictable unless you practically empty the crucible.
|-
|-
|C
|C
|(6, 7, 8)
|2
|H
|H
|2
|2
|2.250
|2.250
|3.260
|3.260
|150
|
|Carbon. Must sweep beam. 1Å/sec (fluctuating 0.4–0.9Å/sec) at ~1.4–1.6 emission.
|Carbon. Must sweep beam. 1Å/sec (fluctuating 0.4–0.9Å/sec) at ~1.4–1.6 emission.
|-
|-
|Co
|Co
|(6, 7, 8)
|2
|C
|C
|1
|1
|8.9
|8.9
|0.343
|0.343
|150
|
|'''Use only with permission'''
|'''Use only with permission'''
|-
|-
|Fe
|Fe
|(6, 7, 8)
|
|
|
|
|
Line 102: Line 102:
|-
|-
|Ge
|Ge
|8 (6, 7, 8)
|3
|C
|C
|6
|6
|5.35
|5.35
|0.516
|0.516
|130
|
|
|
|-
|-
|Gd
|Gd
|(6, 7, 8)
|3
|H
|H
|3
|3
|7.89
|7.89
|0.670
|0.670
|120
|
|'''Use only with permission'''
|'''Use only with permission'''
|
|
|-
|-
|MgO
|MgO
|(6, 7, 8)
|1
|
|
|6
|6
Line 130: Line 130:
|-
|-
|Mo
|Mo
|(6, 7, 8)
|
|
|
|
|
|10.2
|10.2
|0.257
|0.257
|140
|
|
|
|-
|-
|Ni
|Ni
|1
|5
|H
|H
|1
|1
|8.91
|8.91
|0.331
|0.331
|140
|104
|Prone to spitting. Cool down for 15 minutes before venting.
|Prone to spitting. Cool down for 15 minutes before venting.
|-
|-
|NiCr
|NiCr
|(6, 7, 8)
|1
|H
|H
|6
|6
Line 157: Line 157:
|-
|-
|Nb
|Nb
|(6, 7, 8)
|4
|C
|C
|6
|6
Line 166: Line 166:
|-
|-
|Pd
|Pd
|6 (6, 7, 8)
|1
|H
|H
|9
|9
|12.0
|12.0
|0.357
|0.357
|140
|112
|
|
|-
|-
|Pt
|Pt
|1
|4
|C
|C
|8
|8
|21.40
|21.40
|0.245
|0.245
|140
|100
|Prone to spitting. Evaporate at 1.5Å/sec or less.
|Prone to spitting. Evaporate at 1.5Å/sec or less.
|-
|-
|Ru
|Ru
|(6, 7, 8)
|1
|C
|C
|6
|6
|12.362
|12.362
|0.182
|0.182
|142
|
|Prone to spitting. Evaporate at 1.0Å/sec or less. Cool down for 20 minutes before venting.
|Prone to spitting. Evaporate at 1.0Å/sec or less. Cool down for 20 minutes before venting.
|-
|-
|Si
|Si
|(6, 7, 8)
|2
|H
|H
|2
|2
|2.32
|2.32
|0.712
|0.712
|150
|
|Cool down very slowly after evaporating lest you crack the source.
|Cool down very slowly after evaporating lest you crack the source.
|-
|-
|SiO
|SiO
|(6, 7, 8)
|
|C
|C
|6
|6
|2.13
|2.13
|0.87
|0.87
|132
|
|'''Use only with permission'''
|'''Use only with permission'''
|-
|-
|SiO<sub>2</sub>
|SiO<sub>2</sub>
|(6, 7, 8)
|1
|C
|C
|6
|6
|2.648
|2.648
|1.00
|1.00
|140
|
|'''Use only with permission.'''
|'''Use only with permission.'''
Please change the crystal and the upper mirror after evaporating oxide. Density 2.2-2.7 according to thin film dep. table.
Please change the crystal and the upper mirror after evaporating oxide. Density 2.2-2.7 according to thin film dep. table.
|-
|-
|SrF<sub>2</sub>
|SrF<sub>2</sub>
|(6, 7, 8)
|1
|C
|C
|6
|6
|4.28
|4.28
|0.727
|0.727
|140
|
|'''Use only with permission'''
|'''Use only with permission'''
|-
|-
|Ta
|Ta
|(6, 7, 8)
|1
|H
|H
|6
|6
Line 239: Line 239:
|-
|-
|W
|W
|(6, 7, 8)
|1
|C
|C
|6
|6
|19.3
|19.3
|0.163
|0.163
|138
|
|
|
|-
|-
|Ti
|Ti
|3
|2
|H
|H
|3
|3
|4.50
|4.50
|0.628
|0.628
|139
|109
|
|
|}
|}

Revision as of 16:59, 11 March 2022

Back to Vacuum Deposition Recipes.

Vapor Pressure Chart and Materials Deposition Table

Aluminum Deposition

E-Beam 1 (Sharon)

Ar-Ion Beam Source

Materials Table (E-Beam #1)

There are four hearth "positions" able to be loaded at any one time, meaning only up to 4 materials can be evaporated without breaking vacuum. Now able to handle Four-4" wafers in one run.

Material Position Hearth / Crucible Film Number Density Z Ratio Tooling Comments
Ag 7 (6, 7, 8) C 5 10.5 0.529 110
Al 1 C 6 2.7 1.080 102
Al2O3 (6, 7, 8) C 6 3.97 0.336
Au 3 C 4 19.3 0.381 92 Bazookas can be used at 20-30Å/sec.
AuGe (6, 7, 8) C 5 17.63 0.397 Composition unpredictable unless you practically empty the crucible.
C (6, 7, 8) H 2 2.250 3.260 Carbon. Must sweep beam. 1Å/sec (fluctuating 0.4–0.9Å/sec) at ~1.4–1.6 emission.
Co (6, 7, 8) C 1 8.9 0.343 Use only with permission
Fe (6, 7, 8) 7.86 0.349
Ge 8 (6, 7, 8) C 6 5.35 0.516
Gd (6, 7, 8) H 3 7.89 0.670 Use only with permission
MgO (6, 7, 8) 6 3.58 0.411 Use only with permission
Mo (6, 7, 8) 10.2 0.257
Ni 5 H 1 8.91 0.331 104 Prone to spitting. Cool down for 15 minutes before venting.
NiCr (6, 7, 8) H 6 8.50 0.3258 Density and z-ratio for Nichrome IV
Nb (6, 7, 8) C 6 8.57 0.516 ( should be 0.492) Cool down for at least 35 minutes before venting.
Pd 6 (6, 7, 8) H 9 12.0 0.357 112
Pt 4 C 8 21.40 0.245 100 Prone to spitting. Evaporate at 1.5Å/sec or less.
Ru (6, 7, 8) C 6 12.362 0.182 Prone to spitting. Evaporate at 1.0Å/sec or less. Cool down for 20 minutes before venting.
Si (6, 7, 8) H 2 2.32 0.712 Cool down very slowly after evaporating lest you crack the source.
SiO (6, 7, 8) C 6 2.13 0.87 Use only with permission
SiO2 (6, 7, 8) C 6 2.648 1.00 Use only with permission.

Please change the crystal and the upper mirror after evaporating oxide. Density 2.2-2.7 according to thin film dep. table.

SrF2 (6, 7, 8) C 6 4.28 0.727 Use only with permission
Ta (6, 7, 8) H 6 16.6 0.262 Requires extremely high current. Minimum 35 minute cool down. Hearth #3 may be used. Call maintainer before you try Ta.
W (6, 7, 8) C 6 19.3 0.163
Ti 2 H 3 4.50 0.628 109

E-Beam 2 (Custom)

Materials Table (E-Beam #2)

Material Density, g/cm3 Z Ratio Tooling factor, % Comments
Al2O3 3.97 0.336 140.0 Tony could you please check this?
CeO2 7.13 1.000 252.0 Deposition at room temperature (see the details in the following file)
CeO2 7.13 1.000 117.0 Deposition at 200 C (see the details in the following file)
CeO2 7.13 1.000 99.7 Deposition at 250 C (see the details in the following file)
GeO2 6.24 1.000 139.0
ITO 6.43-7.14 1.000 139.0 z ratio unknown
MgO 3.58 0.411 157.6 OK
Si 2.32 0.712 150.0
SiO2 2.648 1.000 157.6 Density 2.2-2.7 according to thin film deposition tables
SiOx 2.13 0.87 130.0
SrF2 4.28 0.727 140.0
Ta2O5 8.2 0.30 157.6
TiO2 4.26 0.400 139.0

ITO deposition (E-Beam 2)

CeO2 deposition (E-Beam 2)

E-Beam 3 (Temescal)

Materials Table (E-Beam #3)

The following materials are always installed in the evaporator. There are 4 materials available on each gun (front/rear guns), allowing for co-deposition by running both guns simultaneously.

Material Gun Hearth /Crucible Process Gain, A/sec/%pwr Film Number Density, g/cm3 Z Ratio Tooling, % Comments
Au Front C 2.0 3 19.30 0.381 56
Ni Front C 0.5 2 8.91 0.331 67
Pt Front C 0.4 1 21.40 0.245 67
Ti Front C 5.0 4 4.50 0.628 67
Ag Rear C 10.0 2 10.50 0.529 67
Al Rear C 10.0 1 2.70 1.080 53
Ge Rear C 10.0 3 5.35 0.516 80
Pd Rear C 0.9 4 12.038 0.357 48

E-Beam 4 (CHA)

Materials Table (E-Beam #4)

Material Density, g/cm3 Z Ratio Master tooling, % Process Gain, A/sec/%pwr Comments
Ag 10.50 0.529 110 10.0
Al 2.70 1.080 110 6.0 updated 9/1/2021
Au 19.30 0.381 120 10.0
Co 8.90 0.343 150 5.0
Cr 7.20 0.305 140 10.0
Fe 7.86 0.349 165 10.0
Ge 5.35 0.516 126 10.0
Hf 13.09 0.360 150 10.0
Ir 22.40 0.129 130 10.0
Ni 8.91 0.331 150 5.0
NiCr 8.50 0.3258 140 10.0 density and z ratio for Nichrome IV
NiFe 8.70 1.000 100 10.0
Pd 12.038 0.357 112 10.0
Pt 21.40 0.245 130 10.0
Ru 12.362 0.182 100 10.0
Ti 4.50 0.628 183 10.0
Zr 6.49 0.600 150 10.0