Stepper 2 (AutoStep 200): Difference between revisions

From UCSB Nanofab Wiki
Jump to navigation Jump to search
(→‎Operating Procedures: added sub sections)
(link to stepper vs contact tutorial)
Line 23: Line 23:


The system is computer controlled with the capability to program and save a wide variety of exposure jobs. We also have unlimited phone support for system problems through a service contract.
The system is computer controlled with the capability to program and save a wide variety of exposure jobs. We also have unlimited phone support for system problems through a service contract.

'''Tutorial:''' If you are not familiar with the differences between Contact Litho and Stepper Litho, please review this short tutorial: [https://wiki.nanofab.ucsb.edu/w/images/c/cb/Demis_D_John_-_Stepper_Reticle_Layout_vs_Wafer_Layout.pdf Demis D. John - Stepper_Reticle_Layout_vs_Wafer_Layout.pdf]


==Detailed Specifications==
==Detailed Specifications==
Line 73: Line 75:
==Operating Procedures==
==Operating Procedures==


=== Tool Operation ===
===Tool Operation===


*[https://wiki.nanofab.ucsb.edu/w/images/0/05/Running_the_JOB-_One_Page_Instructions.pdf Running the JOB - One Page Instructions]
*[https://wiki.nanofab.ucsb.edu/w/images/0/05/Running_the_JOB-_One_Page_Instructions.pdf Running the JOB - One Page Instructions]
Line 80: Line 82:
*[[Autostep 200 Troubleshooting and Recovery|Troubleshooting and Recovery]]
*[[Autostep 200 Troubleshooting and Recovery|Troubleshooting and Recovery]]


=== Job Programming ===
===Job Programming===


*[https://wiki.nanofab.ucsb.edu/w/images/2/27/Autostep_200_-_Setting_up_the_Job.pdf Programming a Job] - Detailed instructions
*[https://wiki.nanofab.ucsb.edu/w/images/2/27/Autostep_200_-_Setting_up_the_Job.pdf Programming a Job] - Detailed instructions
*[[Stepper 2 (Autostep 200) - Job Programming|Programming Differences between Piece-parts and Full Wafers]]
*[[Stepper 2 (Autostep 200) - Job Programming|Programming Differences between Piece-parts and Full Wafers]]


=== Reference/Other Info ===
===Reference/Other Info===


*[[Autostep 200 Mask Making Guidance|Mask Making Guidelines]] - ''for designing and ordering photomasks''
*[[Autostep 200 Mask Making Guidance|Mask Making Guidelines]] - ''for designing and ordering photomasks''

Revision as of 00:44, 13 February 2024

Stepper 2 (AutoStep 200)
Stepper2.jpg
Location Bay 6
Tool Type Lithography
Manufacturer GCA
Description GCA 200 I-Line Wafer Stepper

Primary Supervisor Biljana Stamenic
(805) 893-4002
biljana@ece.ucsb.edu

Secondary Supervisor

Bill Millerski


Recipes Lithography Recipes

SignupMonkey: Sign up for this tool


About

Our GCA wafer stepper is an i-line (365 nm) step and repeat exposure tool for doing lithography that requires high resolution (≥500nm) and/or critical alignment (≥150nm).

The system has been modified to accept piece parts (down to smaller than 10mm x 10mm) up to 6” diameter wafers using manual wafer loading. The maximum square die size is 14.8 mm x 14.8 mm.

The system has an Olympus 2145 (N.A. = 0.45) lens that reduces the mask image by 5x and gives an ultimate resolution of better than 0.5 um in the center of the lens field. The system can easily produce 0.7 um isolated lines across the entire field. The Autostep200 system has 3-point wafer leveling to improve focus uniformity across the field. Autofocus is used to determine the sample surface relative to the lens, making the focus stable and repeatable for different thickness of wafer. The stages are controlled by stepper motors and laser interferometers.

Using the "global", manual alignment, better than 0.25 um alignment error is achievable. Using the DFAS "local" alignment system, alignment error better than 0.15 um is achieved. With the 1000 W Hg arc lamp, we get about 420 mW/cm² of i-line intensity at the wafer.

The system is computer controlled with the capability to program and save a wide variety of exposure jobs. We also have unlimited phone support for system problems through a service contract.

Tutorial: If you are not familiar with the differences between Contact Litho and Stepper Litho, please review this short tutorial: Demis D. John - Stepper_Reticle_Layout_vs_Wafer_Layout.pdf

Detailed Specifications

  • Lens: Olympus 2145: NA = 0.45; Depth of field = 1.2 um for 0.6 um process
  • Maximum die size: ~ 15 mm x 15 mm
  • Resolution: 400-450 nm for R&D; 700 nm over entire 15 mm x 15 mm field
  • Registration tolerance: 0.25 µm global alignment; Max 0.15 µm local alignment (with care, you can achieve < 0.10 µm registration)
  • Substrate size: ~ 10 x 10 mm up to 100 mm (150 mm possible, we don't provide the vacuum chuck for it).
  • Computer programmable, recipes saved on hard disk
  • Reticle alignment fiducials and global/local fiducials available - contact us for CAD files.

Process Information

Photomask Info

Recipes

Photoresists

  • The laboratory contains a variety of i-line compatible photoresists. See the Photolith. Recipes Page for detailed processing info (bakes/spins/exposure does etc.). Basic photoresists include:
    • 955CM-0.9 for 0.7-1.0 um thick positive processes.
    • AZ5214E for 1.0 um thick image reversal (negative) process.
    • SPR955CM-1.8 for 1.5-2.0 um thick positive processes.
    • SPR220-3 for 2.5-5 um thick positive process.
    • SPR220-7 for >5 um thick positive processes.
    • AZnLOF5510 for <1.0um and AZnLOF 2020 for 1.5-3 um negative resist process.
    • Shipley LOL-2000 is also used as an underlayer for high resolution lift-off processes.

CAD Files

Service Provider

Operating Procedures

Tool Operation

Job Programming

Reference/Other Info

Maintenance Procedures

These procedures are for Staff / Special use only - contact staff if you think you need to run these!