Stepper 3 (ASML DUV)

From UCSB Nanofab Wiki
Jump to navigation Jump to search
Stepper 3 (ASML DUV)
ASML.jpg
Tool Type Lithography
Location Bay 7
Supervisor Demis D. John
Supervisor Phone (805) 893-5934
Supervisor E-Mail demis@ucsb.edu
Description Deep-UV Stepper Photolithography
Manufacturer ASML
Model PAS 5500/300
Lithography Recipes
Sign up for this tool



About

General Capabilities/Overview

The ASML 5500 stepper is a 248nm (KrF) DUV stepper for imaging dense features down to below 200nm and isolated line structures down to below 150nm (with effort). 300nm+ features are relatively "easy" to resolve. Layer-to-layer overlay accuracy is better than 30nm.

The system is configured for 4” wafers. The system is designed for high throughput, so shooting multiple 4" wafers is extremely fast, typically minutes per wafer, but any size other than 4-inch is difficult to work with (see below for more info). Additionally, exposure jobs are highly programmable, allowing for very flexible exposures of multiple aligned patterns from multiple masks/reticles in a single session, allowing for process optimization of large vs. small features in a single lithography.

The full field useable exposure area is limited to the intersection of a 31mm diameter circle and a rectangle of dimensions 22mm x 27mm. Users have stitched multiple photomasks together with success. See the Mask Making Guidelines page for more info on exposure field sizes and how to order your mask plates.

Tutorial: If you are not familiar with the differences between Contact Litho and Stepper Litho, please review this short tutorial: Demis D. John - Stepper_Reticle_Layout_vs_Wafer_Layout.pdf

Photoresists Available

See PhotoLith. Recipes for full process info & links to PR datasheets.

  • UV210-0.3 - Positive: 300nm nominal thickness
  • UV6-0.8 - Positive: 800nm nominal thickness
  • UV26-2.5 - Positive: 2.5um nominal thickness
  • UVN2300-0.5 - Negative: 500nm nominal thickness
  • DUV42P-6/DS-K101 - Bottom Anti-Reflective Coatings “BARC”
  • PMGI/LOL1000/LOL2000 - Underlayers

AZ300MIF Developer for all processes

Many of these DUV PR's are also able to be exposed with EBL.

Part Size Limits

With staff support, mounted pieces down to 14mm in size can be exposed using a 4” wafer as a carrier. Flatness will typically be worse in this situation, so small <<500nm features will usually have bad uniformity across the mounted part due to focus variations. Edge bead on irregular pieces (eg. quarter-wafers/squares) will significantly reduce yield/uniformity.

Multi-layer Alignment on mounted parts is particularly difficult, requiring either semi-permanent mounting to the carrier (eg. BCB, SU8 etc.) or significant difficulty/effort to re-align the part to the carrier wafer on each lithography (≤100µm re-mounting accuracy needed).

At this time the maximum wafer size is 4” (100mm) wafers with SEMI standard wafer flat (not Notch).

Service Provider

  • ASML - ASML performs quarterly periodic maintenance and provides on-demand support.

Process Information

  • Process Recipes Page > "Stepper 3" - Established recipes and corresponding linewidths, photoresists etc.
  • Sample size: 100 mm wafers with SEMI std. major flat
    • Piece-parts process is possible but difficult - contact supervisor for info
  • Alignment Accuracy: < 50 nm
  • Minimum Feature Size: ≤150 nm isolated lines, ≤200 nm dense patterns
    • To achieve ≤200nm features with high uniformity, we recommend wafers with total thickness variation (TTV) ≤5µm, and designing your CAD with a smaller Image Size for the high-res. feature.
  • Wafer Thickness: Minimum ≈ 200µm, Maximum ≈ 1.1 mm
  • Maximum Dose: ~100mJ
    • Non-chemically amplified EBL resists are not permissible due to this limit.

Maximum Wafer Bow

Measured over 90mm on the Tencor Flexus

  • Do not run wafers with bow values higher than the following values, contact supervisor for advice if needed.
  • Silicon wafers (~550µm thick): 100 µm will likely fail.
  • Sapphire (less pliable), ≥60µm bow will intermittently fail - DO NOT RUN
    • This applies especially for GaN-on-Sapphire, which often have high wafer bow.
  • Near these values, and you may lose the wafer inside the machine due to wafer vacuum error - DO NOT RUN if unsure.
  • Substrate material and substrate thickness affect this limit - please contact supervisor for advice.
  • You can stress-compensate wafers to reduce the wafer bow, eg. via dep. on the back side of the wafer. If you wafer is concave down, then depositing a compressive film on the back will reduce its curvature. Coat the backside of the wafer with compressive PECVD SiO2 or IBD SiN, or other compressive films for concave-down bow.

Operating Procedures

All procedures are access-restricted only to authorized users with a UCSB NetID (YourNetID@ucsb.edu), by vendor request.
Please contact supervisor for access/training.


ASML Operating Procedures - access-restricted google drive folder of PAS 5500/300 operating procedures.

Stepper #3 Training Videos - these provide bookmarked quick-reference to various tool procedures & programming.

Training Procedure

To get access to this tool, please do the following:

  1. Email the supervisor for access to the training materials. Please provide your UCSB NetID.
  2. Study the training videos.
    1. If you are a technician and will never program jobs, only Part 1 is necessary.
  3. "Shadow" someone in your group who uses the machine, until you are completely comfortable with (1) wafer cleaning (critical), (2) reticle load/unload and (3) running a pre-made job. When you are ready, do step 4:
  4. Contact the supervisor for an short hands-on check-off, after which you'll get SignupMonkey access.

Design Tools

Mask Design and CAD files

  • Stepper Mask-Making Guidelines - Generic info needed to design and order a reticle for any Stepper system. This is minimal unrestricted info that is viewable without additional paperwork.

UCSB Photomasks Available

  • UCSB DUV Reticles - Photomasks available with various Alignment Markers (contact, EBL), Resolution Testing etc.

Recipes

To calibrate your own Litho processes, you will need to:

Litho. recipes for all our photolith. tools can be found on the Photolithography Recipes page.

Process Control Data

ASML CD Calibration data - Screenshot of Table
Example of Data Table with SEM's of 320nm features. Click for full data table.
ASML CD Calibration Data - Screenshot of SPC Plot
Example SPC Chart - Measured Critical Dimension "CD" versus Date. Click for current charts.