PECVD Recipes: Difference between revisions
(→ICP-PECVD (Unaxis VLR): moved Old recipes to their own subheading) |
|||
(One intermediate revision by the same user not shown) | |||
Line 137: | Line 137: | ||
==Process Control Data (Unaxis ICP-PECVD)== |
==Process Control Data (Unaxis ICP-PECVD)== |
||
''Regularly-run depositions and measurements of film properties over time - executed by [https://nanofab.ucsb.edu/workforce NanoFab Interns].'' |
|||
*[https://docs.google.com/spreadsheets/d/1CuDMKFTTzGLL6CP-FEI_9cOnUaIw-432ppDFssB59wY/edit#gid=417334948https://docs.google.com/spreadsheets/d/1CuDMKFTTzGLL6CP-FEI_9cOnUaIw-432ppDFssB59wY/edit#gid=417334948 ICP-PECVD Process Control Plots] - ''Plots of all Process Control data'' |
*[https://docs.google.com/spreadsheets/d/1CuDMKFTTzGLL6CP-FEI_9cOnUaIw-432ppDFssB59wY/edit#gid=417334948https://docs.google.com/spreadsheets/d/1CuDMKFTTzGLL6CP-FEI_9cOnUaIw-432ppDFssB59wY/edit#gid=417334948 ICP-PECVD Process Control Plots] - ''Plots of all Process Control data'' |
||
*[https://docs.google.com/spreadsheets/d/1CuDMKFTTzGLL6CP-FEI_9cOnUaIw-432ppDFssB59wY/edit#gid=0 Low Deposition Rate SiO<sub>2</sub>] |
*[https://docs.google.com/spreadsheets/d/1CuDMKFTTzGLL6CP-FEI_9cOnUaIw-432ppDFssB59wY/edit#gid=0 Low Deposition Rate SiO<sub>2</sub>] |
Latest revision as of 01:34, 7 January 2025
Back to Vacuum Deposition Recipes.
PECVD 1 (PlasmaTherm 790)
PECVD 1 Process Control Plots - Plots of all process control data
SiO2 deposition (PECVD #1)
- SiO2 [PECVD 1] Current Process Control Data
- SiO2 [PECVD 1] Historical Data - Oct. 2021 and earlier
SiN deposition (PECVD #1)
- Si3N4 [PECVD 1] Standard Recipe
- Si3N4 [PECVD 1] Current Process Control Data
- Si3N4 [PECVD 1] Historical Data - Oct. 2021 and earlier
Low Stress Si3N4 (PECVD#1)
- Low Stress Si3N4 [PECVD 1] Standard Recipe
- Low Stress Si3N4 [PECVD 1] Historical Data - 2021-10 and earlier
SiOxNy deposition (PECVD #1)
- SiOxNy Standard Recipe
- SiOxNy Data 2014 - Rate, Index etc.
- SiOxNy1000A Thickness uniformity 2014
Standard Cleaning Procedure (PECVD #1)
The cleaning procedure is very important in order to have consistent result on this tool and also to keep particulate count low. After each deposition you should clean the tool following instructions carefully. The clean is done in two steps:
- Wet cleaning (start cleaning by using a cleanroom wipe sprayed with DI. Wipe chamber sidewalls with it. Finish cleaning by using the cleanroom wipe sprayed with IPA. )
- Load the recipe for cleaning "CF4/O2 Clean" (edit the recipe and change ONLY time of cleaning). Follow instructions regarding a required time for cleaning.
Film Dep'd | Cleaning Time |
---|---|
SiO2 | TBD |
Si3N4 | TBD |
SiOxNy | Same as XYZ |
Standard Cleaning Recipe (PECVD#1): "CF4/O2 Clean"
Click the above link for a screenshot of the standard cleaning recipe, for which you will enter a custom time. The recipe is set up so that it will pop up a window for the cleaning time upon running the recipe - you do not need to edit the recipe before running it.
PECVD 2 (Advanced Vacuum)
PECVD 2 Process Control Plots - Plots of all process control data
SiO2 deposition (PECVD #2)
- SiO2 [PECVD 2] New Standard Recipe - "STD SiO2 v2"
- SiO2 [PECVD 2] Old Standard Recipe - "STD SiO2"
- SiO2 [PECVD 2] Current Process Control Data
- SiO2 [PECVD 2] Historical Data - Before Oct. 2021
- SiO2 deposition rate at 150C is 35nm/min
SiN deposition (PECVD #2)
- Si3N4 [PECVD 2] New Standard Recipe - "STD Si3N4 v3"
- Si3N4 [PECVD 2] Old Standard Recipe - "Nitride2"
- Si3N4 [PECVD 2] Current Process Control Data
- Si3N4 [PECVD 2] Historical Data - Before Oct. 2021
Low-Stress SiN deposition (PECVD #2)
Low-Stress Silicon Nitride, Si3N4 (< ±100 MPa)
- Low Stress Si3N4 [PECVD 2] New Standard Recipe - "STD LS-Si3N4 v4"
- Low Stress Si3N4 [PECVD 2] Old Standard Recipe - " Old LSNitride2 recipe "
- Low Stress Si3N4 [PECVD 2] Current Process Control Data
- Plots of Low-Stress Si3N4 Process Control Data
- Low Stress Si3N4 [PECVD 2] Historical Data - Before Oct. 2021
- Old Versions of the recipe:
- LS Nitride2 Standard Recipe 2014-5/9/2018
- STD LSNitride2 5/9/2018
Low-Stress SiN 3xTime (PECVD #2)
This Low-Stress SiN recipe is more stable over time (months), because each step is 3x longer (so each compressive/tensile layer is thicker), making it less susceptible to RF ignition delays as the grounding strap is etched over time. – 2024-09 Demis & Biljana
- Recipe: "STD LS-Si3N4 3xTime v1"
- Process Control Data: Calibration Data
- Process Control Charts/Plots: Calibration control limits versus date
Amorphous-Si deposition (PECVD #2)
Standard Cleaning Procedure (PECVD #2)
The cleaning procedure is very important in order to have consistent result on this tool and also to keep particulate count low. After each deposition you should clean the tool following instructions carefully. The clean is done in two steps:
- (If >29min dep time) Wet cleaning: Start cleaning by using a cleanroom wipe sprayed with DI. Wipe upper chamber sidewalls with it. Finish cleaning by using the cleanroom wipe sprayed with IPA & wiping again.
- Load the recipe for cleaning "STD CF4/O2 Clean" (edit the recipe and change ONLY time of cleaning). Follow instructions regarding required time for cleaning.
Standard Clean Recipe (PECVD#2): "STD CF4/O2 Clean"
Click the above link for a screenshot of the standard cleaning recipe, for which you will enter a custom time. The recipe is set up so that it will pop up a window for the cleaning time upon running the recipe - you do not need to edit the recipe before running it.
Clean Times (PECVD#2)
Film Deposited | Cleaning Time (Dry) |
---|---|
SiO2 | 1 min. clean for every 1 min. deposition |
Si3N4 | 1 min. clean for every 7 min of deposition |
If > 29min total dep time
(Season + Dep) |
Wet Clean the Upper Lid/Chamber
DI water then Isopropyl Alcohol on chamber wall & portholes |
ICP-PECVD (Unaxis VLR)
2020-02: New recipes have been characterized for low particulate count and repeatability. Only staff-supplied recipes are allowed in the tool. Please follow the new procedures to ensure low particle counts in the chamber.
The system currently has Deuterated Silane (SiD4) installed - identical to the regular Silicon precursor SiH4, except that it significantly lowers optical absorption in the near-infrared due to shifted molecular vibrations/molecular weights. This gas is more expensive and thus more applicable to optical application than to general-purpose SiN films.
Process Control Data (Unaxis ICP-PECVD)
Regularly-run depositions and measurements of film properties over time - executed by NanoFab Interns.
- ICP-PECVD Process Control Plots - Plots of all Process Control data
- Low Deposition Rate SiO2
- High Deposition Rate SiO2
- Si3N4
- Low Stress Si3N4
Low Deposition Rate SiO2 [ICP-PECVD]
- Low Deposition Rate SiO2 [ICP-PECVD] - Standard Recipe - "SiO2 LDR250C-new May 2024
Old Data
- Low Deposition Rate SiO2 [ICP-PECVD] - Standard Recipe - "SiO2 LDR250C - replaced on May 2024"
- Old Recipe - 2019
- Low Deposition Rate SiO2 [ICP-PECVD] - Historical Data - before Oct. 2021
High Deposition Rate SiO2 [ICP-PECVD]
- High Deposition Rate SiO2 [ICP-PECVD] - Standard Recipe - "SiO2 HDR250C-new May 2024"
- High Deposition Rate SiO2 [ICP-PECVD] - Current Process Control Data
Old Data
- High Deposition Rate SiO2 [ICP-PECVD] - Standard Recipe - "SiO2 HDR250C-replace on May 2024"
- Old Recipe - 2019
- High Deposition Rate SiO2 [ICP-PECVD] - Historical Data
Gap-Fill SiO2 [ICP-PECVD]
Recipe designed by Warren Jin, please consider our publication policy if you publish using this recipe.
NOTE: Please contact tool supervisor before running this recipe - this recipe must often be scheduled to prevent excessive chamber maintenance.
Able to effectively fill ~1:1 and ~1:2 aspect ratio gaps in Silicon and Glass structures (eg. waveguides/optical gratings) with void-free filling.
The recipe uses a high 400W RF Bias to reduce buildup on corners that causes voids during growth.
- Category =
SiO2 GapFill - Std.
- FLOW:
SiO2 GapFill 250C
- Will run the sequence
SiO2 GapFill 250C 450W
. Do not change this!
- Will run the sequence
- STEP (edit TIME only):
SiO2 GapFill 250C
- Deposition rate = 99.968nm/min [9/20/23]
Si3N4 [ICP-PECVD]
- Si3N4 [ICP-PECVD] - Standard Recipe - "SiN 250C-new May 2024"
Old Data
- Si3N4 [ICP-PECVD] - Standard Recipe - "SiN 250C- replaced on May 2024"
- Old Recipe - 2019
- Si3N4 [ICP-PECVD] - Historical Data - before Oct. 2021
Low Stress Si3N4 [ICP-PECVD]
- Low Stress Si3N4 [ICP-PECVD] - Standard Recipe - "SiN Low Stress 250C-new May 2024"
- Low Stress Si3N4 [ICP-PECVD] - Current Process Control Data
Old Data
- Low Stress Si3N4 [ICP-PECVD] - Standard Recipe - "SiN Low Stress 250C - replaced on May 2024"
- Old Recipe - 2019
Standard Seasoning Procedure [ICP-PECVD]
You must edit the seasoning recipes (SiO2 Seasoning - Std, SiN seasoning - Std). You are allowed to change only seasoning time [time needed to coat chamber walls with ~200nm of film]. Seasoning recipes:
Standard Cleaning Procedure [ICP-PECVD]
You must edit the Post-Dep Clean recipe to correspond to your deposited thickness and material. See the Operating Procedure on the Unaxis Tool Page for details.
- SiNx etches at 20nm/min
- SiO2 etches at 40nm/min
Standard Clean Recipe
General Recipe Notes (Unaxis VLR ICP-PECVD)
- RF1 = Bias
- RF2 = ICP Power
- All recipes start with an Argon pre-clean with 0W bias (gentle), to improve adhesion/nucleation.
- Maximum SiO2 Dep. thickness allowed: 800nm
- Above this thickness, you must run a chamber clean/season before depositing more onto your product wafer.