Lithography Recipes

From UCSB Nanofab Wiki
Revision as of 20:43, 16 February 2023 by John d (talk | contribs) (fixed link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Table of Contents

Photolithography Processes

  1. UV Optical Lithography
  2. General Photolithography Techniques
    • Techniques for improving litho. or solving common photolith. problems.
  3. Lift-Off Recipes
    • Verified Recipes for lift-off using various photolith. tools
    • General educational description of this technique and it's limitations/considerations.
  4. E-beam Lithography
  5. Holography
    • For 1-D and 2-D gratings with 220nm nominal period, available on substrates up to 1 inch square.
    • Recipes for silicon substrates are provided, and have been translated to other substrates by users.
    • Datasheets are provided with starting recipes and usage info.
  6. Edge-Bead Removal
    • Edge photoresist removal methods needed for clamp-based etchers
    • Improves resolution for contact lithography

Photolithography Chemicals/Materials

  1. Underlayers
    • These are used beneath resists for both adhesive purposes and to enable bi-layer lift-off profiles for use with photoresist.
    • Datasheets are provided.
  2. Anti-Reflection Coatings:
    • The Photoresist Recipes section contains recipes using these materials.
    • Bottom Anti-Reflection Coatings (BARC) are used in the stepper systems, underneath the resists to eliminate substrate reflections that can affect resolution and repeatability for small, near resolution limited, feature sizes.
    • Datasheets are provided for reference on use of the materials.
  3. Contrast Enhancement Materials (CEM)
    • The Photoresist Recipes section contains recipes using these materials.
    • Used for resolution enhancement. Not for use in contact aligners, typically used on I-Line Steppers.
    • Datasheets provided with usage info.
  4. Adhesion Promoters
    • These are used to improve wetting of photoresists to your substrate.
    • Datasheets are provided on use of these materials.
  5. Low-K Spin-on Dielectrics
  6. Developers and Removers
    • Datasheets provided for reference.
    • Remover and Photoresist Strippers are used to dissolve PR during lift-off or after etching.

General Photolithography Techniques

HMDS Process for Improving Adhesion

  • Use these procedures if you are finding poor adhesion PR lifting-off), or for chemicals (like BHF) that attack the PR adhesion interface strongly.

Edge-Bead Removal Techniques

  • These techniques are required for loading full-wafers into etchers that use top-side clamps, to prevent photoresist from sticking to the clamp (and potentially destroying your wafer).
  • For contact lithography, this improves the proximity of the mask plate and sample, improving resolution. For some projection systems, such as the Maskless Aligner, EBR can help with autofocus issues.

Photoresist reflow (MicroChem)

  • To create slanted sidewalls or curved surfaces.

Photolithography Recipes

  • R: Recipe is available. Clicking this link will take you to the recipe.
  • A: Material is available for use, but no recipes are provided.

Click the tool title to go to recipes for that tool.

Click the photoresist title to get the datasheet, also found in Stocked Chemicals + Datasheets.

Photolithography Recipes
Contact Aligner Recipes Stepper Recipes Direct-Write Litho. Recipes
Positive Resists SUSS MJB-3 SUSS MA-6 Stepper 1
(GCA 6300)
Stepper 2
(AutoStep 200)
Stepper 3
(ASML DUV)
MLA150
(Heidelberg)
AZ4110 R R A A R
AZ4210 R R A A A
AZ4330RS R R A A R
AZ4620 A A A A A
OCG 825-35CS A A A A A
SPR 955 CM-0.9 A R R R R
SPR 955 CM-1.8 A A R R A
SPR 220-3.0 R R R R R
SPR 220-7.0 R R R R A
THMR-IP3600 HP D A A R
UV6-0.8 R
UV210-0.3 R
UV26-2.5 A
Negative Resists SUSS MJB-3 SUSS MA-6 Stepper 1
(GCA 6300)
Stepper 2
(AutoStep 200)
Stepper 3
(ASML DUV)
MLA150
(Heidelberg)
AZ5214-EIR R R R R R
AZnLOF 2020 R R R R R
AZnLOF 2035 A A A A A
AZnLOF 2070 A A A A A
AZnLOF 5510 A A R R A
UVN30-0.8 R
SU-8 2005,2010,2015 A R A A A
SU-8 2075 A A A A R
NR9-1000,3000,6000PY R R A R A
Anti-Reflection Coatings SUSS MJB-3 SUSS MA-6 Stepper 1
(GCA 6300)
Stepper 2
(AutoStep 200)
Stepper 3
(ASML DUV)
MLA150
(Heidelberg)
XHRiC-11 A A A
DUV42-P R
DS-K101-304 R
SUSS MJB-3 SUSS MA-6 Stepper 1
(GCA 6300)
Stepper 2
(AutoStep 200)
Stepper 3
(ASML DUV)
MLA150
(Heidelberg)

Lift-Off Recipes

E-Beam Lithography Recipes (JEOL JBX-6300FS)

  • Under Development.

FIB Lithography Recipes (Raith Velion)

To Be Added

Automated Coat/Develop System Recipes (S-Cubed Flexi)

Recipes pre-loaded on the S-Cubed Flexi automated coat/bake/develop system. Only staff may write new recipes, contact the tool supervisor for more info.

Ask Staff if you need a new recipe.
Coating Material Route/Chain Name: User: "UCSB Users" Spin Speed (krpm) Bake Temp Notes
DS-K101 Route DSK101's Develop Rate depends on Bake temp - you can use this to control undercut.

See: DSK Bake vs. Dev rate

Coat-DSK101[5K]-220C 5.0 220°C Requires: HP4=220°C

This is essentailly equivalent to DUV42P @ 220°C, must be dry etched.

Coat-DSK101[5K]-210C 5.0 210°C Requires: HP4=210°C
Coat-DSK101[5K]-200C 5.0 200°C Requires: HP4=200°C
Coat-DSK101[5K]-185C 5.0 185°C Requires: HP4=185°C
UV6-0.8 Route Coat-UV6[2K]-135C 2.0 135°C Requires: HP1=135°C
Coat-UV6[2.5K]-135C 2.5 135°C
Coat-UV6[3K]-135C 3.0 135°C
Coat-UV6[3.5K]-135C 3.5 135°C
Coat-UV6[4K]-135C 4.0 135°C
Coat-UV6[5K]-135C 5.0 135°C
Coat-UV6[6K]-135C 6.0 135°C
DS-K101 @ 220°C

+ UV6

Chain Coat-DSK101[5K]-220C-UV6[2K]-135C DSK: 5krpm

UV6: 2.0krpm

DSK: 220°C

UV6: 135°C

Requires:

– HP4=220°C

– HP1=135°C

Plan for ~10-15 min per wafer.

Coat-DSK101[5K]-220C-UV6[2.5K]-135C DSK: 5krpm

UV6: 2.5krpm

same as above same as above
Coat-DSK101[5K]-220C-UV6[3K]-135C DSK: 5krpm

UV6: 3.0krpm

same as above same as above
Coat-DSK101[5K]-220C-UV6[3.5K]-135C DSK: 5krpm

UV6: 3.5krpm

same as above same as above
Coat-DSK101[5K]-220C-UV6[4K]-135C DSK: 5krpm

UV6: 4.0krpm

same as above same as above
Coat-DSK101[5K]-220C-UV6[5K]-135C DSK: 5krpm

UV6: 5.0krpm

same as above same as above
Coat-DSK101[5K]-220C-UV6[6K]-135C DSK: 5krpm

UV6: 6.0krpm

same as above same as above
DS-K101 @ 185°C

+ UV6

Chain Coat-DSK101[5K]-185C-UV6[2K]-135C DSK: 5krpm

UV6: 2.0krpm

DSK: 185°C

UV6: 135°C

Requires:

– HP4=185°C

– HP1=135°C

Plan for ~10-15 min per wafer.

Coat-DSK101[5K]-185C-UV6[2.5K]-135C DSK: 5krpm

UV6: 2.5krpm

same as above same as above
Coat-DSK101[5K]-185C-UV6[3K]-135C DSK: 5krpm

UV6: 3.0krpm

same as above same as above
Coat-DSK101[5K]-185C-UV6[3.5K]-135C DSK: 5krpm

UV6: 3.5krpm

same as above same as above
Coat-DSK101[5K]-185C-UV6[4K]-135C DSK: 5krpm

UV6: 4.0krpm

same as above same as above
Coat-DSK101[5K]-185C-UV6[5K]-135C DSK: 5krpm

UV6: 5.0krpm

same as above same as above
Coat-DSK101[5K]-185C-UV6[6K]-135C DSK: 5krpm

UV6: 6.0krpm

same as above same as above
Hotplate Set Route SET-HP4-220C 220°C Hotplate 4 (top) between 218-222°C when done.
SET-HP4-210C 210°C
SET-HP4-200C 200°C
SET-HP4-185C 185*C

Holography Recipes

The Holography recipes here use the BARC layer XHRiC-11 & the high-res. I-Line photoresist THMR-IP3600HP-D.

Low-K Spin-On Dielectric Recipes

Chemicals Stocked + Datasheets

The following is a list of the lithography chemicals we stock in the lab, with links to the datasheets for each. The datasheets will often have important processing info such as spin-speed vs. thickness curves, typical process parameters, bake temps/times etc.

Positive Photoresists

i-line and broadband

DUV-248nm

Negative Photoresists

i-line and broadband

DUV-248nm

Underlayers
E-beam resists
Nanoimprinting
Contrast Enhancement Materials
Anti-Reflection Coatings
Adhesion Promoters
Spin-On Dielectrics

Low-K Spin-On Dielectrics such as Benzocyclobutane and Spin-on Glass

Developers
Photoresist Removers